1 - G. Fazio,L。Ferrighi,D。Perilli,C。DiValentin,“掺杂石墨烯的计算电化学作为燃料电池中的电催化材料”,《国际量子化学杂志》,2016,116,116(22),1623-1640。2 - C. Ronchi,M。Datteo,D。Perilli,L。Ferrighi,G。Fazio,D。Selli,C。DiValentin,π“石墨烯中碳单流量的磁性通过混合密度功能计算计算”,《物理化学杂志》,《杂志(联合第一位作者)3 - L. Ferrighi,D。Perilli,D。Selli,C。DiValentin,“缺陷的石墨烯与Cu或Pt(111)表面之间的界面上的水”,ACS应用材料和互动界面,2017,9(35),29932-299941。4 - D. Perilli,D。Selli,H。Liu,E。Bianchetti,C。DiValentin,“ H-BN有缺陷的层作为巨型N-供体宏观细胞,用于CU ADATOM捕获来自基础金属底物的Cu Adatom诱捕”,《物理化学杂志》,2018,2018,122(41),23610-23610-2610-23610-23610-23610-23610-2362222。(第一作者)5 - T.H.nguyen,D。Perilli,M。Cattelan,H。Liu,F。Sedona,N。A.Fox,C。DiValentin,S。Agnoli,“对石墨烯和六角硼硼之间平面异质结构的单步生长的微观见解”,Nano Research,2019,12(3),675-682。6 - D. Perilli,D。Selli,H。Liu,C。DiValentin,“金属载量和金属硫化有缺陷的H bn的水计算电化学”,Chemsuschem,2019,12,195,1995-2007。(第一作者)7 - H. Liu,D。Perilli,M。Dolce,C。Di Valentin,“对WSE 2X S 2(1-X)单层的NA吸附的洞察:一项混合功能研究”,《混合功能调查》,《杂志》物理学:冷凝物质:2020,32,32,395001。8 - S. Fiori,D。Perilli,M。Panighel,C。Cepek,A。Ugolotti,A,A,Sala,H。Liu,G。Comelli,C。Di Valentin,C。Africh,“'Inside Out Out'成长方法,用于高质量硝基化的石墨烯的'Inside Out'成长方法”,碳,碳,碳,2021,171,171,171,171,704-704-710。
10Pc 1/4 驱动 6 点套筒:5/32、3/16、7/32、1/4、9/32、5/16、11/32、3/8、7/16、1/2 10Pc 1/4 驱动 6 点公制套筒:4、5、6、7、8、9、10、11、12、13mm 6 Pc 1/4 驱动 6 点公制深套筒:4、5、6、7、8、9mm 3 Pc 3/8 驱动 PHILLIPS® 钻头套筒:#1、#2、#3 9 Pc 3/8 驱动 6 点套筒: 3/8,7/16,1/2,9/16,5/8,11/16,3/4, 13/16, 7/8 6 个 3/8 驱动 6 点公制深套筒:10,11 12, 13, 14, 15,mm 2 个 3/8 驱动延长杆 - 锁定:3, 6 (76, 152mm) 2 个 3/8 驱动火花塞公制套筒:16, 21mm 8 个 3/8 驱动 6 点 TORX® 套筒:E8, E10, E11, E12, E14, E16, E18, E20 11 个 3/8 驱动 6 点公制套筒: 9、10、11、12、13、14、15、16、17、18、19 毫米 4 件 1/2 驱动冲击 6 点公制套筒:17、19、21、23 毫米 4 件 1/2 驱动 12 点套筒:15/16、1、1-1/16、1-1/4 7 件 1/2 驱动 12 点套筒:20、21、22、24、27、30、32 毫米 6 件 3/8 驱动六角批头套筒 3、4、5、6、8、10 毫米 3 件 3/8 驱动 POZIDRIVE® 批头套筒:#1、#2、#3、12 件全抛光长面板组合扳手:8、9、10、11、12、13、14、15、16、17、18、19mm 3 件双盒反转公制棘轮扳手:8x9、12x13、17x19mm 7 件 1/4 驱动 TORX(孔)钻头:T-10、T-15、T-20、T-25、T-27、T-30、T-40 10 件六角扳手:1.5、2.0、2.5。 3.0、4、5、6、7、8、10mm 1 件 1/4 驱动梨形头棘轮,带舒适握把 1 件 1/4 驱动延长杆 100mm 1 件 1/4 旋转手柄 6 件 1/2 驱动深 6 点公制套筒:10、12、13、14、17、19mm 2 件 1/2 驱动延长杆:5、10(125、150mm) 3 件 3/8 驱动开槽钻头套筒:4、5.5、6.5mm 7 件 3/8 驱动 TORX® 钻头套筒:T-20、T-30、T-40、T-45、 T-50、T-55、T-60 1 件 1/4 驱动万向节 1 件 1/4 驱动适配器 1 件 3/8 驱动梨形头棘轮,带舒适握把 1 件 3/8 驱动万向节 1 件 1/2 驱动梨形头棘轮,带舒适握把 1 件 1/2 驱动万向节
引言昆虫是地球上最多样化,最大的生物群,包括大约30个订单和近一百万个描述的物种。他们占所有描述的物种的75%,居住在包括南极洲在内的几乎所有栖息地和大陆上的土地,水和空气。节肢动物,最多样化的动物群,占地球上所有动物物种的三分之二以上。linnaeus在1758年描述的鳞翅目包括蝴蝶和飞蛾。“ Lepidoptera”一词来自希腊语单词“ lepis”(scale)和“ ptera”(翅膀)。与约180,000种,它们分布在126个家庭中(Capinera。et。al。,2008)[8]和46个超家族(槌槌。et。al。,2007)[12],占所有描述的生物体的百分之十。鳞翅目是全球最广泛,最广泛认可的昆虫秩序之一(Powell。et。al。,2009)[29]。鳞翅目在身体结构方面表现出许多变化,这些变化已演变为在生命和分布中提供益处。飞蛾,蝴蝶的表兄弟,属于这个命令。记录蛾多样性可以提供进化见解,并有助于为鳞翅目昆虫制定保护目标。这项研究旨在探索马哈拉施特拉邦巴拉马蒂及其周围周围的飞蛾多样性,这在很大程度上没有被评估。鳞翅目物种丰富度随栖息地异质性而增加,支持资源和结构多样性促进更大的生物多样性的范式。六角洲类中最多样化和第二大阶是鳞翅目(Benton,1995)[6]。他们提供关键的生态系统服务,例如授粉,分解和营养循环。鳞翅目,包括蝴蝶和飞蛾,在森林生态系统和农业领域很常见,通常被称为生态系统的生物学指标。印度的蛾动物群是众所周知的,在英国政府期间,在20世纪,特别是在马哈拉施特拉邦的20世纪之前的调查有限。鳞翅目Indica的第一卷发表于1890年,这些出版物仍然是鳞翅目上最好,最全面的作品之一。近年来,研究人员已将鳞翅目用作模型生物,以探索人造活动和污染对生态系统的影响。他们执行必不可少的生态系统服务,并表现出作为森林健康指标的希望(Kitching等,2000)[23],以及其他昆虫群(例如膜翅目)多样性的代理。
10Pc 1/4 驱动 6 点套筒:5/32、3/16、7/32、1/4、9/32、5/16、11/32、3/8、7/16、1/2 10Pc 1/4 驱动 6 点公制套筒:4、5、6、7、8、9、10、11、12、13mm 6 Pc 1/4 驱动 6 点公制深套筒:4、5、6、7、8、9mm 3 Pc 3/8 驱动 PHILLIPS® 钻头套筒:#1、#2、#3 9 Pc 3/8 驱动 6 点套筒: 3/8,7/16,1/2,9/16,5/8,11/16,3/4, 13/16, 7/8 6 个 3/8 驱动 6 点公制深套筒:10,11 12, 13, 14, 15,mm 2 个 3/8 驱动延长杆 - 锁定:3, 6 (76, 152mm) 2 个 3/8 驱动火花塞公制套筒:16, 21mm 8 个 3/8 驱动 6 点 TORX® 套筒:E8, E10, E11, E12, E14, E16, E18, E20 11 个 3/8 驱动 6 点公制套筒: 9、10、11、12、13、14、15、16、17、18、19 毫米 4 件 1/2 驱动冲击 6 点公制套筒:17、19、21、23 毫米 4 件 1/2 驱动 12 点套筒:15/16、1、1-1/16、1-1/4 7 件 1/2 驱动 12 点套筒:20、21、22、24、27、30、32 毫米 6 件 3/8 驱动六角批头套筒 3、4、5、6、8、10 毫米 3 件 3/8 驱动 POZIDRIVE® 批头套筒:#1、#2、#3、12 件全抛光长面板组合扳手:8、9、10、11、12、13、14、15、16、17、18、19mm 3 件双盒反转公制棘轮扳手:8x9、12x13、17x19mm 7 件 1/4 驱动 TORX(孔)钻头:T-10、T-15、T-20、T-25、T-27、T-30、T-40 10 件六角扳手:1.5、2.0、2.5。3.0、4、5、6、7、8、10mm 1 件 1/4 驱动梨头棘轮,带舒适握把 1 件 1/4 驱动延长杆 100mm 1 件 1/4 旋转手柄 6 件 1/2 驱动深 6 点公制套筒:10、12、13、14、17、19mm 2 件 1/2 驱动延长杆:5、10(125、150mm) 3 件 3/8 驱动开槽钻头套筒:4、5.5、6.5mm 7 件 3/8 驱动 TORX® 钻头套筒:T-20、T-30、 T-40、T-45、T-50、T-55、T-60 1 件。1/4 驱动万向节 1 件。1/4 驱动适配器 1 件 3/8 驱动梨形头棘轮,带舒适握把 1 件 3/8 驱动万向节 1 件 1/2 驱动梨形头棘轮,带舒适握把 1 件 1/2 驱动万向节
抽象的二维过渡金属二分元化是下一代光电学的领先材料,但是基本问题是商业化的基本问题。这些问题首先包括在低温下观察到的强烈低能量宽发光峰(L-PEAKS)的广泛争议的缺陷和应变诱导的起源。其次,氧气在通过化学吸附和物理吸附来调整性质中的作用很有趣,但挑战性地理解。第三,我们对六角硼(HBN)封装的益处的物理理解不足。使用一系列样品,我们将氧气,缺陷,吸附物和对单层MOS 2的光学性质的贡献解脱出来。与氧化样品相比,通过温度和功率依赖性的光致发光(PL)测量证实,对于氧辅助化学蒸汽沉积(O-CVD)样品,与氧辅助化学蒸汽沉积(O-CVD)的急剧红移相比,与脱氧于130 meV一起证实。 异常,O-CVD样品在室温(CF去角质)下显示出很高的A-EXCITON PL,但在低温下降低了PL,这是由于应变诱导的直接诱导的直接型带直接在低缺失的O-CVD MOS 2中。 这些观察结果与我们的密度功能理论计算一致,并由拉曼光谱学支持。 在去角质样品中,带电的O正常被识别为热力学上有利的缺陷,并创建差距态。 封装的有益作用源于减少带电的O Adatoms和吸附物。通过温度和功率依赖性的光致发光(PL)测量证实,对于氧辅助化学蒸汽沉积(O-CVD)样品,与氧辅助化学蒸汽沉积(O-CVD)的急剧红移相比,与脱氧于130 meV一起证实。异常,O-CVD样品在室温(CF去角质)下显示出很高的A-EXCITON PL,但在低温下降低了PL,这是由于应变诱导的直接诱导的直接型带直接在低缺失的O-CVD MOS 2中。这些观察结果与我们的密度功能理论计算一致,并由拉曼光谱学支持。在去角质样品中,带电的O正常被识别为热力学上有利的缺陷,并创建差距态。封装的有益作用源于减少带电的O Adatoms和吸附物。这项实验性理论研究发现了每个样品中缺陷的类型,使您可以理解缺陷,应变和氧对条带结构的综合作用,并丰富了我们对封装影响的理解。这项工作提出了O-CVD作为创建光电学高质量材料的一种方法。
摘要。新的矿物Dacostaite,K(mg 2 al)[mg(H 2 O)6] 2(ASO 4)2 F 6·2H 2 O,已在Cetine di Cotorniano矿山,Chiusdino,Siena,Siena,Siena,Tuscany,Tuscany,意大利,意大利。它以薄,无色至白色的伪六角云母的尺寸而出现。条纹是白色的,光泽是丝般的。裂解在{001}上是完美的。基于(as + p)= 2个原子的Dacostaite的经验公式为(k 0。56 Ca 0。 04 Na 0。 03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。56 Ca 0。04 Na 0。 03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。04 Na 0。03□0。 37)6 1。 00(Al 1。 54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。03□0。37)6 1。00(Al 1。54 mg 1。 38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。54 mg 1。38 CU 0。 03 Zn 0。 03)6 2。 98 [mg(h 2 o)6] 2 [(AS 0。 99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。38 CU 0。03 Zn 0。03)6 2。98 [mg(h 2 o)6] 2 [(AS 0。99 P 0。 01)o 4] 2 [f 4。 46(OH)1。 46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。99 P 0。01)o 4] 2 [f 4。46(OH)1。46 O 0。 08] 6 6。 00·2H 2 O(Z = 2)。 dacostaite是单斜的,具有C 2/ m的空间组,A = 12。 474(5),b = 7。 198(3),C = 13。 724(6)Å,β= 99。 518(13)°,V = 1215。 3(8)Å3。 使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。 0927用于1022唯一的反射,带有f o>4σ(f o)。 dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。 在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。46 O 0。08] 6 6。00·2H 2 O(Z = 2)。dacostaite是单斜的,具有C 2/ m的空间组,A = 12。474(5),b = 7。198(3),C = 13。724(6)Å,β= 99。518(13)°,V = 1215。3(8)Å3。使用单晶X射线衍射数据求解了晶体结构,并将其重新固定至R 1 = 0。0927用于1022唯一的反射,带有f o>4σ(f o)。dacostaite的晶体结构可以描述为由H键与H键连接的近代性hedryhedral {001}层和分离的Mg(H 2 O)6组形成。在类型的材料中,dacostaite与石英,硫,石膏和像硅酸盐石灰石小腔相关。其起源与氧化(Al,f) - 富裕的流体的活性相结合,在SB矿床的后期演变中,以前在Cetine di cotorniano矿山上被利用。