非共线反铁磁体 (AFM) 是一个令人兴奋的新平台,可用于研究本征自旋霍尔效应 (SHE),这种现象源于材料的能带结构、贝里相位曲率和对外部电场的线性响应。与传统的 SHE 材料相比,非共线反铁磁体的对称性分析不禁止具有 ̂ x、̂ z 极化的非零纵向和平面外自旋电流,并预测电流方向为磁晶格的各向异性。本文报道了在非共线状态下唯一生成的 L1 2 有序反铁磁 PtMn 3 薄膜中的多组分平面外自旋霍尔电导率 𝝈 x xz 、𝝈 y xz 、𝝈 z xz。最大自旋扭矩效率 (𝝃 = JS / J e ≈ 0.3) 明显高于 Pt (𝝃 ≈ 0.1)。此外,非共线状态下的自旋霍尔电导率表现出预测的取向相关各向异性,为具有可选自旋极化的新设备开辟了可能性。这项工作展示了通过磁晶格进行对称性控制作为磁电子系统中定制功能的途径。
具有非共线自旋结构的反铁磁体表现出各种特性,使其对自旋电子器件具有吸引力。其中一些最有趣的例子是尽管磁化可以忽略不计,但仍然表现出异常霍尔效应,以及具有不寻常自旋极化方向的自旋霍尔效应。然而,只有当样品主要处于单个反铁磁畴状态时,才能观察到这些效应。这只有当补偿自旋结构受到扰动并由于自旋倾斜而显示出弱矩时才能实现,从而允许外部畴控制。在立方非共线反铁磁体的薄膜中,这种不平衡以前被认为需要由基板应变引起的四方畸变。本文表明,在 Mn 3 SnN 和 Mn 3 GaN 中,自旋倾斜是由于磁性锰原子远离高对称位置的大量位移导致结构对称性降低。当仅探测晶格度量时,这些位移在 X 射线衍射中仍然隐藏,需要测量大量散射矢量才能解析局部原子位置。在 Mn 3 SnN 中,诱导净矩使得能够观察到具有不同寻常温度依赖性的异常霍尔效应,据推测这是由于 kagome 平面内类似块体的温度依赖性相干自旋旋转所致。
我们研究了在锤子图上定义的自由屈服模型的基础状态下的多部分信息和纠缠措施。使用邻接矩阵的已知对角线化,我们解决了模型并构建了基态相关矩阵。此外,当子系统由嵌入在较大较大的n个分离的子系统组成时,我们发现切碎相关矩阵的所有特征值。这些结果允许我们找到一个确切的公式,用于隔离图的纠缠熵以及相互和三方信息。我们使用这些措施的确切公式在两个不同的热力学限制中提取其渐近行为,并与数值计算相匹配。尤其是,我们发现纠缠熵承认对数违反该地区法的行为减少了与区域法规模相比的纠缠数量。©2023作者。由Elsevier B.V.这是CC根据许可证(http:// creativecommons .org /licenses /by /by /4 .0 /)的开放访问文章。由SCOAP 3资助。
和铁磁交换相互作用。也许最广泛研究的旋转纹理是,首先是在非中心体B20化合物中观察到的类似Bloch的天空,无论是在单个Crys-talls [5]中,在[10]和第二个薄膜中的外皮膜中,第二,在薄膜中层中的Néel-like skyrim层中的néel-like skyrim层中的厚度金属层和厚度的厚度层均层层。[6,11]前者依赖于体积,后者是派生的dmi界面。在最近的研究中,已经证明了基于四Yz的逆元2 yz的抗速素家族可以维持磁性反孔m,[12-14]另一种类型的非共线性自旋纹理,表现出独特的拓扑特征,此外,椭圆形的bloch skyrmions。[15]这些纹理是基础D 2D晶体对称性的结果,该晶体对称性必然引起各向异性DMI。该DMI还导致反对者在场和温度方面的稳定性增强,并且通过简单地改变存在的薄片的厚度来使其大小的极端可调性。[16,17]后者是偶极 - 偶极相互作用的结果,在与低对称性相对的相对量中很重要,例如D 2D,也解释了同一材料系统中椭圆形Bloch Skyrmions的可能性。[15,18,19]
提出了一种确定10-5水平动力学束能的方法,与传统方法相比,该方法可以提高一个多个数量级的改进。,在稀有的同学束上的共线荧光和共振电离光谱测量值,其中束能是对不确定性的主要贡献,可以从这种方法中受益。该方法基于共线光谱法,除了波长仪表以外,不需要特殊设备,这通常可用。在NI梁上的原理实验中证明了它的出现。在准备能量测量时,已经鉴定出3 d 9 4 S 3 d 3→3 d 3→3 d 9 4 p 3 p 2的中性镍同位素中的转变为ν0(58 ni)= 850 343 678(58 ni)= 850 343 678(20)MHz and ni(60 ni(60 ni)= 850 ni)= 850 344 HHH = 850 344 HHH = 850 34 HHH = 850 34 HHH。