光合作用被认为是维持星球生命的基础,而光收获是光系统的第一步,并激活了随后的光化学反应。然而,太阳辐射光谱和叶绿体的吸收曲线之间的不完全匹配限制了光合色素对阳光的完全吸收和利用。在这里,我们设计了两个新的聚集诱导的发射(AIE)活性分子,其活性烷基(TPE-PPO和TPA-TPO),并通过易于的无金属金属“单击”反应实现了对活叶绿体的实质性操纵。由于匹配的光物理特性,AIE发光剂(Aiegens)可以收集有害的紫外线辐射(HUVR)和光合效率低下的辐射(PIR),并进一步将其转化为光合作用的活性辐射(PAR),以吸收叶绿素。结果,共轭的Aiegen-Cloroplasts表现出更好的水分分离能力和三磷酸腺苷(ATP)生成的能力,这是光合作用中重要的产物。这是报道的第一个基于AIEGEN的共轭策略,用于改善太阳能利用率和增强光合作用效率。
抗体 - 药物缀合物(ADC)代表了靶向毒素到特定细胞类型的有效治疗方法。ADC由通过接头与药物分子共轭的单克隆抗体(MAB)组成。使用mABS会导致仅将细胞毒性有效载荷递送至靶向细胞类型,并且由于这种ADC已显示为有效的部位特异性癌症治疗(1)。两个ADCS,即Kadcycla®(Genentech/Roche)和Adcetris®(西雅图遗传学),已获得FDA批准用于HER2阳性转移性乳腺癌,并分别复发Hodggin的霍奇金淋巴瘤或全身性播种大细胞淋巴瘤。目前正在临床开发中有50多名ADC候选者,其中10多个进入II期和III期临床试验(2)。但是,ADC的大规模生产受到许多因素的阻碍,包括缺乏对所需有毒化合物抗体的有效且一致的结合;不一致的抗体内在化;以及在到达目标组织之前释放毒素的不稳定接头。mabplex为这些问题提供了最先进的解决方案,以允许使用各种连接器的可预测和一致的共轭效率的ADC大规模生产。
表面修饰的层对于钙钛矿太阳能电池的性能和稳定性很重要,但是对表面改性材料的研究仍落后于光伏磁场中的钙钛矿材料。在这项工作中,通过高合成产率的Stille耦合开发了线性共轭的四聚体IDTT4PDI。IDTT4PDI表现出极好的溶解度,热稳定性,合适的Lumo水平(-4.08 eV)和高电子迁移率,这意味着它适合在倒置的钙钛矿太阳能电池中用作表面修饰层。使用IDTT4PDI作为表面修饰的层改善了钙钛矿层和PCBM膜之间的界面接触,减少了陷阱辅助的重组,并提高了电子传输效率。结果,IDTT4PDI-MAPBI 3 PEROVSKITE倒置设备可实现超过20%的效率,该设备远高于控制装置(17%)。这项工作为使用线性二酰亚胺衍生物作为有效的表面修饰材料打开了一个新方向,以实现高效的钙钛矿太阳能电池。
欧洲聚合物联合会自1998年起决定举办一系列欧洲聚合物会议(EUPOC),探讨近期科学和工业界关注的议题。EUPOC在贝尔蒂诺罗大学住宿中心(FC)举行。会议内容包括特邀报告、口头报告和海报展示。由于会议采用住宿式模式,因此留出了充足的时间进行自由讨论。近期 EUPOC 的标题和主题包括:• 生物基聚合物和相关生物材料(EUPOC 2011)• 多孔聚合物基系统(EUPOC 2012)• 聚合物和离子液体(EUPOC 2013)• 精密聚合物:合成、折叠和功能(EUPOC 2014)• 导电聚合物材料(EUPOC 2015)• 用于纳米技术应用的嵌段共聚物(EUPOC 2016)• 聚合物和增材制造:从基础到应用(EUPOC 2017)• 通过合理设计、印迹和共轭的仿生聚合物(EUPOC 2018)• 静电纺丝和相关技术:从设计到生产先进聚合物材料和器件(EUPOC 2019)• 嵌段共聚物:纳米技术的构建基块(EUPOC2022)• 动态聚合物网络(EUPOC 2023)
摘要一种通常持有的观点是与聚乙烯乙二醇(PEG)共轭的纳米载体是非免疫原性的。然而,许多研究报告说,针对固定的纳米载体发生了意外的免疫反应。一个意外的反应是重复给药后的二甲状纳米载体的快速清除,称为加速血液清除率(ABC)现象。ABC涉及对纳米载体组件的抗体的产生,包括PEG,从而降低了封装的治疗剂的安全性和有效性。另一种免疫反应是称为补体的超敏反应或输注反应(c)激活相关的假伪反应(Carpa)。这种免疫原子和类二载体的不良反应性可能引起了临床使用phe型治疗剂的潜在关注。因此,筛查基于纳米载体的治疗剂的免疫原性和腕面反应生成性应成为先决条件,然后才能进行临床研究。本综述从毒理学的角度提出了质脂质体,PEG的免疫原性,ABC现象,C激活和脂质诱导的鲤鱼,还解决了这些不良相互作用与免疫系统不良相互作用的因素。
摘要:卟啉是一种二维材料,由四方晶格中的完全融合的锌卟啉制成。它具有完全共轭的π系统,使其与石墨烯类似。卟啉最近已合成并显示为半导体(Nat。comm。,2023,14,6308。)。这与其电子结构的所有先前预测相反,该预测表明金属电导率。我们表明,卟啉锌的间隙开放是由其晶胞从正方形到直立的PEIERLS扭曲引起的,因此首先说明了其电子结构与实验一致。对这种失真的核算需要对电子离域化的适当处理,这可以使用具有大量精确交换的混合功能来完成。然后将这种功能性PBE38应用于预测许多第一个过渡行金属酚的特性,其中一些已经制备了。我们发现,更改金属会强烈影响金属 - 核能的电子结构,从而产生各种金属导体和半导体,这对于分子电子和旋转型可能引起了极大的关注。这些材料的特性主要受PEIERLS畸变的程度和π系统中的电子数,类似于氧化或还原后环状共轭分子中观察到的芳香性的变化。这些结果可以说明如何将抗神经性概念扩展到周期性系统。
- 丙酮酸)(PCL),D-α-二甲基聚乙烯乙二醇(TPGS)和聚乙烯乙二醇(PEG)以及天然聚合物(例如透明质酸)(HA)。聚合物的选择对于达到所需的特性至关重要,例如稳定性,生物相容性和受控药物释放至关重要。随后,探索了将药物共轭的策略,包括共价键,这使聚合物与药物之间的稳定联系,确保受控释放并最大程度地减少过早药物释放。使用聚合物可以扩展药物的循环时间,从而通过增强的渗透性和保留效应(EPR)效应来促进肿瘤组织中的积累。这反过来又会改善药物效率和降低的全身毒性。此外,突出显示了PDC中靶向肿瘤的配体的重要性。可以将各种配体(例如抗体,肽,适体,叶酸,赫赛汀和HA)掺入偶联物中,以选择性地将药物输送到肿瘤细胞中,从而减少靶向效果并改善治疗结果。总而言之,PDC已成为一种多功能有效的癌症治疗方法。它们结合聚合物和药物优势的能力提供了增强的药物输送,控制释放和靶向治疗,从而提高了癌症治疗的总体效率和安全性。该领域的进一步研究和发展具有推进个性化癌症治疗选择的巨大潜力。
获取光/光子携带的信息对于信息科学的基础研究以及量子和经典层面的许多光应用都至关重要。在本次演讲中,我将首先介绍一系列直接断层扫描协议,这些协议可以表征各种类型的结构光或高维光子状态。首先,我们展示了一些用于 OAM 状态、拉盖尔-高斯模式和厄米-高斯模式的高性能模式分类器。然后,我们介绍一些无扫描直接断层扫描协议,这些协议可以测量高维空间模式、空间矢量模式和部分相干模式(混合状态)。这些直接断层扫描方法将读数直接与描述要测量的量子系统的复值状态向量或其他量相关联,因此可以显著降低高维状态断层扫描程序的复杂性。此外,我们表明可以设计断层扫描协议,以便可以在单个实验装置中获取描述光子状态所需的所有信息,而无需任何扫描。这对于量子和经典光子状态的实时计量尤其有趣。在工作的第二部分,我将介绍一些关于湍流环境中稳健的高信息容量光通信协议的最新工作。我将展示一种基于湍流弹性矢量光束的通信方案以及一种基于相位共轭的方案,以通过 340m 自由空间链路实现使用 OAM 模式的低串扰通信。最后,我还将介绍一种矢量相位共轭方案,该方案可通过 1 公里的多模光纤实现 210 空间模式通信。这些实现可以导致在现实环境中实际开展高维光通信。
改性石墨烯因其成本效益和机械和电稳定性而得到广泛认可。此外,就石墨烯复合材料的最终产品的稳定性而言,即使在极端条件下,模板也能通过阻止纳米金属从表面移动来稳定催化剂的活性位点。[2,8] 这种材料的其他特性包括重量轻、对任何气体完全不渗透、对高电流密度的极端可持续性(比铜好一百万倍)以及由于结构的长程π共轭而易于化学功能化。理论上,这种共轭的、原子级厚度的六边形堆积结构呈现出 550 Fg −1 的电双层 (EDL) 电容。它们确实提供了很高的比电容,达到 268 F/g,高于活性炭提供的比电容(210 F/g)。 [ 9 ] 石墨烯的蜂窝结构也是构建其他碳同素异形体的基本块。例如,当蜂窝结构堆叠时,它就是石墨。一维纳米管是蜂窝结构的卷绕结构,而零维富勒烯是它的包裹结构。石墨烯的应用非常广泛,例如用于高频晶体管、发光二极管、储能应用、超灵敏测量设备、太阳能电池、燃料电池、废水处理等。石墨烯是下一代纳米电子设备非常有希望的候选材料。[ 10,11,12 ] 与检测光谱宽度有限的半导体不同,石墨烯提供了宽光谱范围和高工作带宽,因此使其适合高速数据通信。由于石墨烯是一种惰性物质,因此可以用作防止水和氧气扩散的腐蚀屏障。石墨烯可以直接在任何金属上生长,这为石墨烯的应用提供了巨大的帮助。[ 9 ]
碳量子点 (CD) 是小于 10 纳米的碳纳米粒子,具有吸引人的光致发光特性、良好的水溶性、高稳定性和生物相容性。该名称源于其最重要的特性:荧光,这使它们可以与量子点(荧光半导体纳米粒子)同化。它们与这些的不同之处在于它们主要由碳组成,碳是一种通常无毒的元素,预计这将为它们在生物领域的应用带来显著优势。因此,CD 这个名字反映了发射与入射光不同波长的光的组成和特性。自从 Xu 等人发现它们以来,CD 一直被广泛地用作光的来源。 2004 年,1 圆二色球被应用于不同的基础研究环境和非常技术性的应用,从分子通讯 2-5 到治疗诊断 6,以及用于检测特定分析物 7、8,特别是金属离子。 9-11 此外,正如 Sun 等人所证明的,通过表面钝化,圆二色球荧光产量大大增加。 12 虽然圆二色球荧光的化学-物理机制尚未完全了解,13 但文献中发现,荧光可以通过多种因素进行调节:粒度(量子效应)、表面基团、表面缺陷、具有不同程度 π 共轭的荧光团和位于团簇的 sp 2 碳和基质的 sp 3 碳之间的电子空穴。 14 − 16 最近的研究表明,光学特性会因所用的合成方法、钝化、掺杂和 CD 的尺寸而有很大差异。17 − 22 这表明荧光可能取决于纳米粒子的表面,特别是可能导致某些波长吸收的“表面缺陷”。23 因此,表面的功能化