摘要 目的——卫星因其轨迹可预测性和为军事行动提供的基本功能而成为有吸引力的军事目标。在过去的 13 年中,至少有三个国家(即美国、中国和印度)成功进行了动能反卫星 (ASAT) 导弹试验,这大大增加了低地球轨道空间碎片的数量,其中一些碎片仍在轨道上运行并对太空资产构成威胁 (Miglani, 2019, Wolf, 2007)。所有这些反卫星武器试验都是针对进行试验的国家的自有太空资产进行的,因此,这些事件并未触发武装冲突法 (jus in bello) 的适用。然而,这并不意味着对这些试验的法律评估,特别是在战时法方面,在实践中无关紧要,因为技术破坏能力已经存在,使用这些武器的合法性尚不明显。事实上,一些作者已经强调了使动能反卫星武器合法化的困难,或者更准确地说,对太空资产的武装袭击。有人认为,由于无法预测空间碎片的数量以及爆炸产生的空间碎片可能造成的二次附带损害(Stephens and Steer,2016),在某些情况下,动能反卫星攻击很难符合比例原则,甚至在某些情况下,攻击本身可能具有无差别性(Koplow,2009)。可以看出,反卫星武器的合法性值得怀疑,主要是因为动能攻击的影响,但有些武器旨在干扰通信系统或使用定向能量造成故障,而不会产生空间碎片,可能除了一颗非活动轨道卫星。因此,适用于动能反卫星攻击的大多数论点可能不适用于非动能反卫星攻击。在本文中,作者认为,在某些情况下使用非动能反卫星武器很难符合战争法的一般原则,尤其是瞄准规则。本文的目的在于分析在武装冲突中使用非动能反卫星武器是否符合战时法,如果不符合,那么其合法使用的条件是什么。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
卡塔尔国埃米尔谢赫塔米姆·本·哈马德·阿勒萨尼殿下对姐妹国家土耳其共和国的访问引起了土耳其媒体的关注,土耳其媒体用大量篇幅报道了这次重要访问。访问期间,埃米尔殿下和他的兄弟、总统雷杰普·塔伊普·埃尔多安主持了卡塔尔-土耳其最高战略委员会第 8 次会议。土耳其报纸和电视台重点报道了埃米尔殿下和土耳其总统之间的双边会晤,会晤期间,双方回顾了两个兄弟国家发展战略关系的前景,并讨论了地区和世界共同关心的问题。他们还关注了埃米尔殿下和总统埃尔多安签署的协议和谅解备忘录
该报告还指出了潜在的经济利益,这表明更高的动物福利实践可以改善产品质量,更长的保质期和增加的市场价值。例如,据报道,诸如较短的«植物持续时间和较小的捕获量之类的方法已被证明可以减轻靶标物种和非目标物种的«SH胁迫和损伤。根据ALI的说法,较低的应力水平导致乳酸的积累较少,这可以改善«NAL产物的质地和寿命。
在本文中,我们提出了一种新的动机模型,通过将自决理论(SDT)与统一的技术接受和使用理论(UTAUT)融合在一起。使用探索性方法,我们研究了人类动机决定因素如何影响技术接受的安全与隐私之间的权衡。我们将斯堪的纳维亚医疗保健环境作为我们的经验开始,并探讨了丹麦老年人如何看待基于传感器的电子卫生监测器技术来监视其健康状况。丹麦市政当局已开始使用这些技术来识别预警信号,从而通过使人们更加自力更生和减少不必要的住院来提高护理和生活质量。但是,在实施这些技术时,需要考虑有关隐私与安全的道德问题。在监视了21名受访者(平均年龄:85)之后,在九周内独立生活在家中,我们就他们对隐私和安全的担忧进行了采访。我们发现,如果受访者尊重自主权和个人诚信,以及基于传感器的监控的好处超过与健康相关的威胁,则受访者愿意妥协其隐私。我们使用这些发现和理论的开始来创建一种新颖的模型,该模型在使用UTAUT时考虑了人类的动力。
1 Laboratire d'Etudes d'Etudes et d'Astrophysique,巴黎观察家,PSL大学,PSL大学中心,法国巴黎大学,巴黎大学,巴黎,法国,法国,外在空间事务,联合国外部空间事务,oftii ofvienna ofvienna,维也纳,维也纳,奥地利,橄榄油,3岁,louiana and liisiana and louisiana and louisiana,louisiana,Unitery,Unitery Arogy and batona,Unitery Arogy and batona,Unitery Ariana,Unitery Arya,Unitery Arya,Unitery Aron A.阿联酋航天局,阿布扎比,阿拉伯联合酋长国,意大利航天局,罗马,意大利,6日本航空航天勘探局,太空和宇航员研究所。Science (ISAS), Sagamihara, Kanagawa, Japan, 7 Laboratoire de planétologie et Géosciences, Nantes Université, Nantes, France, 8 National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States, 9 Cornell Center for Astrophysics and Planetary Science, Astronomy Department, Cornell University, Ithaca, NY, United States, 10 Russian Federation State Research Center Institute for Biomedical Programs, Russian Academy of Sciences, Moscow, Russia, 11 Indian Space Research Organisation, Bangalore, India, 12 Canadian Space Agency, Route de l ' Aéroport Saint-Hubert, Longueuil, QC, Canada, 13 Centre National d ' Etudes Spatiales, Paris, France, 14 AstrobiologyOU, Faculty of Science Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom, 15 China National Space Administration, Beijing, China, 16 Department of Planetology and Habitability, Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Madrid, Spain, 17 Laboratoire Interuniversitaire des Systémes Atmosphériques, Université Paris-Est Créteil and Université Paris Cité, CNRS,法国克雷蒂尔,法国,德国航空航天中心(DLR),航空航天医学研究所18号,辐射生物学系,研究小组天体生物学,德国科隆,德国,19欧洲航天局,ESTEC,NOORDWIJK,NOORDWIJK,荷兰,荷兰20号,地球和行星科学系20中国太空技术学院,北京,中国,22行星物理系,俄罗斯科学院太空研究所,俄罗斯,俄罗斯
海洋颗粒是地球上主要元素骑自行车的关键,并在海洋中的养分平衡中起着重要作用。海洋颗粒的三个主要类别通过塑造碳分布来连接开放海洋的不同部分:(i)下沉; (ii)暂停,(iii)上升。由浮游植物在地表水中捕获的大气碳,部分通过将颗粒沉入海洋底部,并在控制全球气候中起着重要作用。悬浮的颗粒代表了异养微生物的有机碳的重要来源,与下沉的颗粒相比,更有可能发生回忆性。上升的颗粒,取决于其组成,原点和上升速度,可能会导致海洋上层的碳回忆性,靠近大气。海洋颗粒是微生物活性的热点,因此被微生物重现,其动力学在有机物降解,聚集和下沉中起着重要作用,从而直接影响了生物碳泵的效率。海洋颗粒的微生物组因粒径,来源和年龄而不同。尽管如此,这些因素通常被忽略,并且粒子大多在不考虑各个颗粒之间的高异质性的情况下被视为“散装”。这阻碍了我们对海洋中的碳预算的理解,从而对气候变化的未来预测进行了预测。此外,我们介绍了一个新颖的概念:“脂质碳分流”。在这篇综述中,我们检查已知的粒子类型和相关的抽样方法,并确定知识差距,并强调需要更好地了解单粒子生态系统以提高全球升级率。
有限的保护:只有17%的全球泥炭地在法律保护下,远低于其他关键生态系统,例如红树林(42%)和盐谷(50%)和热带森林(38%)。高人类压力:大约22%的全球泥炭地面临着高的人类压力(主要在欧洲和美国)。淡水安全和生物多样性:泥炭地包含世界上10%的未植物淡水,并支持各种生态系统。土著在保护中的作用:27%的全球泥炭地在土著人民的土地上,传统的保护习惯使生态系统保存更好,但仍有85%的人在正式的保护框架之外。碳储存和气候影响:泥炭地商店600碳的碳,比世界上所有森林的总和还多,但是,当他们脱落时,它们会释放Co₂,年度人类驱动的温室气体排放量为2-5%。
氧化应激,已知会增加多种代谢和慢性异常或癌症发展的风险,被定义为活性氧(ROS)的产生与抗氧化剂抵消氧化剂有害作用的能力之间的不平衡。为了调节氧化/还原(氧化还原)平衡,存在许多抗氧化剂和非酶抗氧化剂。自由基激活转录因子以促进抗氧化剂的产生和线粒体生物发生。这些转移因子之一,核因子2相关因子2(NRF2)是抗氧化剂和抗炎反应的主要调节剂。的确,NRF2通过启动涉及抗氧化剂和细胞保护反应的数百个基因的转录来促进氧化还原平衡。更好地了解氧化应激的分子靶标及其与NRF2信号通路的相互作用将增强其预防性或治疗性在健康和疾病中的相关性。对于本期特刊,邀请研究人员提交原始文章或审查有关动物模型或人类氧化应激的不同方面的文章。主题包括着重于慢性疾病或预防NRF2信号通路的生物学和生理效应。
摘要:我们在本文中提出了一个新概念,以基于一种称为有向光氧化诱导的转化(DPIC)的机制产生双色光转换探针。作为对这种机制的支持,含有芳香的单重氧反应性部分(如呋喃和吡咯)的苯乙烯香豆素(SC)已合成。sc是明亮的荧光团,由于ASORM的定向光氧化而导致可见光的光辐射,它会在可见的光照射下进行高营养转化,从而导致共轭破坏。sc-p,带有吡咯部分的黄色发射探针,转换为稳定的蓝色发射香豆素,具有68 nm的偏移,从而使光转换和跟踪活细胞中的脂质液滴跟踪。这种新方法可能会为新一代的光转换染料铺平道路,用于高级生物成像应用。
