注意:专业仪器术语在 ANSI/ISA 标准 51.1 - 过程仪器术语中定义。1.不应超过本文件和任何其他适用规范或标准中的压力/温度限制。2.标准 m 3 /小时 - 0 � C 和 1.01325 bar 绝对压力下的标准立方米/小时。Scfh - 60 � F 和 14.7 psia 下的标准立方英尺/小时。3.基于单作用直接继电器的 1.4 bar (20 psig) 值;基于双作用继电器的 5.5 bar (80 psig) 值。4.温度限制因危险区域批准而异。氟硅橡胶的 CUTR Ex d 认证的最低温度限制为 -53 � C (-63.4 � F)。5.不适用于行程小于 19 毫米 (0.75 英寸) 或轴旋转小于 60 度的情况。也不适用于长行程应用中的数字阀门控制器。6.M20 电气连接仅适用于 ATEX 认证。7.当使用高达 3.7 bar (53 psi) 的天然气供应,温度为 16 � C (60 � F) 时,带有低排放继电器选项的 DVC6200 可以满足 6 scfh 的 Quad O 稳态消耗要求。8.基座单元和反馈单元之间的连接需要 4 芯屏蔽电缆,最小线径为 18 至 22 AWG,位于刚性或柔性金属导管中。9.4-20 mA 输出,隔离;电源电压:8-30 VDC;参考精度:行程范围的 1%。10.位置变送器符合 NAMUR NE43 的要求;可选择显示故障低 (< 3.6 mA) 或故障高 (> 22.5 mA)。仅在定位器通电时才显示故障高。11.一个隔离开关,可在整个校准行程范围内配置或由设备警报启动;关闭状态:0 mA(标称);开启状态:高达 1 A;电源电压:最大 30 VDC;参考精度:行程范围的 2%。
背景:随着近年来复杂导线设计的发展,对深部脑刺激 (DBS) 参数进行成像引导优化的需求日益增加,这些设计可提供高度个性化,但耗时且复杂的编程。目的:本研究的目的是比较使用 GUIDE XT™ 进行 DBS 编程所实现的帕金森病 (PD) 运动症状和相应静电场 (VEsF) 体积的变化,GUIDE XT™ 是一种商用软件,用于可视化患者特定解剖结构中的 DBS 导线,该软件结合了术前磁共振成像 (MRI) 和术后计算机断层扫描 (CT) 扫描,并与标准临床编程进行比较。方法:对 29 名 PD 患者和丘脑底核 (STN) DBS 的双侧定向导线进行临床评估,以根据临床效果确定最佳参数集。根据位于背外侧 STN 内的 VEsF,在 GUIDE XT™ 中生成第二个 DBS 程序。比较了运动症状的减轻(运动障碍协会统一帕金森病评定量表,MDS-UPDRS)以及两个程序相应 VEsF 的重叠。结果:与关闭状态相比,临床和影像引导编程导致 MDS-UPDRS 评分显著降低。使用 GUIDE XT™ 衍生的 DBS 程序控制运动症状并不劣于标准临床编程。两个 VEsF 的重叠与程序在运动症状减轻方面的差异无关。结论:使用 GUIDE XT™ 对定向 DBS 导线进行影像引导编程无需计算背景即可实现,并且与临床编程相比,其运动症状控制效果并不劣于临床编程。因此,基于特定于患者的图像数据的 DBS 程序可以作为临床测试的起点,并可以促进更有效的 DBS 编程。 © 2021 由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://
摘要。大西洋子午翻转循环(AMOC)在塑造北大西洋地区及其他地区的气候条件方面起着至关重要的作用,其未来的稳定性是一个令人关注的问题。虽然对面对地表淡水强迫(FWF)的AMOC稳定性进行了彻底的研究,但其对变化CO 2的库里库反应在很大程度上没有探索,从而无法全面了解其在全球变暖下的稳定性。在这里,我们使用地球系统模型探索AMOC的稳定性,因为面对北大西洋和大气CO 2在180至560 ppm之间的FWF的组合变化。我们找到了与定性不同的对流模式相关的四个不同的AMOC状态。Apart from an “Off” AMOC state with no North Atlantic deep-water formation and a “Modern”-like AMOC with deep water forming in the Labrador and Nordic seas as observed at present, we find a “Weak” AMOC state with convection occurring south of 55° N and a “Strong” AMOC state characterized by deep-water formation ex- tending into the Arctic.在整个CO 2的范围内,关闭状态和弱状态是稳定的,但仅适用于正FWF。对于一系列正FWF,现代状态在高于前工业的CO 2下是稳定的,仅对于负FWF而言,对于较低的CO 2。最后,强度仅对高于280 ppm的CO 2和FWF <0.1 SV才稳定。Genally,AMOC的强度随着CO 2的增加而增加,并且随着FWF的增加而减小。我们的AMOC稳定性景观有助于解释寒冷气候中的AMOC不稳定性,尽管它并不直接适用于百年纪念时间尺度上对全球变暖的根本性瞬时反应,但它可以提供有关AMOC可能长期命运的有用信息。例如,虽然在工业前的范围下,AMOC在模型中是可以单位的,但对于高于400 ppm的CO 2浓度,OFF状态也变得稳定,这表明在较温暖的气候中的AMOC关闭可能是不可逆转的。
注意:专业仪器术语在 ANSI/ISA 标准 51.1 - 过程仪器术语中定义。1.不应超过本文件和任何其他适用规范或标准中的压力/温度限制。2.标准 m 3 /小时 - 0 � C 和 1.01325 bar 绝对压力下的标准立方米/小时。Scfh - 60 � F 和 14.7 psia 下的标准立方英尺/小时。3.基于单作用直接继电器的 1.4 bar (20 psig) 值;基于双作用继电器的 5.5 bar (80 psig) 值。4.温度限制因危险区域批准而异。氟硅橡胶经 CUTR Ex d 认证的最低温度限值为 -53 � C (-63.4 � F)。5.典型值。不适用于行程小于 19 毫米 (0.75 英寸) 或轴旋转小于 60 度的情况。也不适用于长行程应用中的数字阀门控制器。6.额定行程为 180 度的旋转执行器需要特殊的安装套件;请联系您的艾默生销售办事处了解套件的可用性。7.当使用温度为 16 � C (60 � F) 、压力高达 4.8 bar (70 psi) 的天然气供应时,配备低排放继电器 A 选项的 DVC6200 可满足 Quad O 稳态消耗量 6 scfh 的要求。当使用温度为 16 � C (60 � F) 、压力高达 5.2 bar (75 psi) 的天然气供应时,低排放继电器 B 和 C 可满足 6 scfh 的要求。8.基本单元和反馈单元之间的连接需要使用刚性或柔性金属导管中的 4 芯屏蔽电缆,最小线径为 18 至 22 AWG。9.4-20 mA 输出,隔离;电源电压:8‐30 VDC;参考精度:行程范围的 1%。10.位置变送器符合 NAMUR NE43 的要求;可选择显示故障低 (< 3.6 mA) 或故障高 (> 22.5 mA)。仅在定位器通电时才显示故障高。11.一个隔离开关,可在整个校准行程范围内配置或通过设备警报启动;关闭状态:0 mA(标称);开启状态:高达 1 A;电源电压:最大 30 VDC;参考精度:行程范围的 2%。
OCEC 将消防安全关闭纳入其火灾缓解计划 在整个西部和这里的梅特霍谷,更长、更干燥、更危险的火灾季节已成为新常态。为此,OCEC 制定了一项火灾缓解计划。该计划致力于降低地役权外的树木和电线周围所需的净空区进入架空线路并形成火源的风险。这些行动基于加州公用事业公司为应对其所在地区最近发生的火灾而制定的类似计划。最近,俄勒冈州的 2020 年火灾促使 OCEC 将消防安全关闭 (FSS) 的可能性添加到其火灾缓解计划中。背景 OCEC 有一个持续的通行权维护计划,以管理对电线构成威胁的植被。OCEC 通过在 2019 年和 2021 年再次引入外部林务员来勘测线路和地役权外的树木,从而增强了该计划。 OCEC 还依靠会员通知我们,在刮风的日子里,大树枝或危险树木可能会从线路上掉下来。如果您遇到这些情况,请向 OCEC 办公室报告。除了植被管理外,OCEC 还将采取额外措施,在红旗条件下关闭变电站重合闸,以最大限度地降低火灾风险。重合闸是一种自动高压电开关,其工作原理与家中的断路器非常相似。当家用断路器跳闸时,它将保持关闭状态,直到手动复位。重合闸将通过自动闭合来测试电线,以查看问题是否已消除,如果问题只是暂时的,重合闸将保持闭合状态,电源将保持开启状态。此操作有时在您的家中被视为“闪烁”。为了减轻火灾风险,OCEC 将重合闸置于“非重合闸”状态,因此当可能出现问题时,断路器将运行,线路将断电,直到 OCEC 工作人员可以手动检查线路是否存在问题。一旦手动检查线路,发现一切正常,线路将重新通电。这可能会导致更长、更频繁的停电。此外,某些偏远森林地区的重合器将在干燥条件允许时关闭。消防安全关闭消防安全关闭 (FSS) 是指公用事业公司主动切断架空线路的电源,这样如果树木倒在线路上,就不会发生故障(并可能导致火灾)。在某些红旗/大风条件下会发生这种情况。地役权外的树木可能会倒在线路上,这是最大的担忧。
设计 LogiTouch 系统时: - 务必设计 LogiTouch 控制系统,以便在发生主电源故障或 LogiTouch 事故时,该系统的整体安全完整性能够得到维护。如果不这样做,错误的输出信号或 LogiTouch 故障可能会导致事故。(1) 联锁电路等设计用于中断或阻止正常机器运动(即紧急停止、一般保护、正向和反向旋转等),以及那些设计用于防止机器损坏(即用于上、下和横向移动极限定位等)都应设计为位于 LogiTouch 之外。(2) 每当 LogiTouch 生成“看门狗定时器错误”时,LogiTouch 操作将停止。此外,当 LogiTouch 无法检测到的输入/输出控制区域发生错误时,可能会发生意外的设备操作。因此,为了防止不安全或意外的设备操作,应该创建一个完全在 LogiTouch 外部的“故障安全电路”。(3) 如果外部单元的继电器或晶体管发生故障,导致输出(线圈)保持开启或关闭状态,则可能会发生重大事故。为防止这种情况,请务必设置外部看门狗电路来监控重要的输出信号。- 在启动 LogiTouch 之前,请务必设计一个为 LogiTouch 的 I/O 单元供电的电路。如果 LogiTouch 的内部程序在 I/O 单元的负载控制电源打开之前进入 RUN 模式,则错误的输出(信号)或故障可能会导致事故发生。- 务必设计一个程序,以防 LogiTouch 显示器或控制单元发生故障,或者 LogiTouch 与任何连接单元之间发生数据传输错误或电源故障时确保系统的安全。这些类型的问题可能会导致错误的输出(信号)或故障,从而可能导致事故发生。- 请勿创建可能危及人身或设备安全的触摸面板开关。这是因为 LogiTouch 或其电缆可能出现故障,导致输出可能导致重大事故的信号。系统的所有主要安全相关开关都应指定为与 LogiTouch 分开操作。- 确保设计您的系统,以便设备不会因 LogiTouch 与其主机控制器之间的通信故障而发生故障。这是为了防止任何可能发生的人身伤害或物质损失。- 请勿将 LogiTouch 与飞机控制装置或医疗生命支持设备、中央干线数据传输(通信)设备、核电控制装置或医疗生命支持设备一起使用,因为这些设备固有要求极高的安全性和可靠性。- 将 LogiTouch 与运输车辆(火车、汽车和轮船)、灾难和犯罪预防设备、各种安全设备、非生命支持相关医疗设备等一起使用时。务必使用冗余和/或故障安全系统设计,确保适当的可靠性和安全性。