Winstein CJ:可以确定手臂功能长期使用的功能阈值:来自计算模型的预测和来自肢体约束诱导疗法评估(EXCITE)试验的支持数据。Phys Ther ù÷÷Ā;ÿĀ :øúùþ-øúúý ÿ) French B Thomas L, Leathley M, Sutton C, McAdam J, Forster A, Langhome P, Price C, Walker A, Watkins C:重复任务训练能改善中风后的功能活动吗?Co-chrane系统综述和荟萃分析。J Rehabil Med ù÷ø÷;ûù :Ā-øû Ā) Di Pino G, Pellegrino G, Assenza G, Capone F,
接下来,使用倾斜的照明荧光显微镜(注5),我们观察到单个分子水平的DNA滴内荧光修饰的DNA结合蛋白的运动(图1B)。通过仅修饰要观察的DNA结合蛋白,可以在单分子水平上观察到。测量结果表明,所有四种类型的DNA结合蛋白在DNA液滴中具有快速,较慢的运动模式。我们还发现,液滴中较高的DNA浓度或增加蛋白质DNA结合位点的数量会导致移动模式较慢的比例增加。在慢速行进模式下,蛋白质可能使用多个DNA结合位点来结合DNA中的多个位置,同时读取多个DNA序列以搜索目标(图1C)。此外,在快速转移模式下,蛋白质会瞬时与DNA结合并解离,从而通过快速移动在液滴中来搜索遥远的目标序列。因此,已经揭示了DNA结合蛋白可以使用这两种模式来实现由液 - 液相分离形成的DNA液滴中有效靶向搜索。
本次研究分析的最古老的样本是从东京湾野岛贝冢(横滨市金泽区)出土的一只太平洋斑纹海豚,可追溯到大约 8,000 年前。研究发现,如果保存得当,即使在横滨这样炎热潮湿的环境中,DNA分子仍可以保留在这些古老的样本中。 在北海道东部的钏路地区,我们调查了两处遗址:东钏路贝冢(钏路市贝冢),其年代为绳文时代早期至中期;以及币舞遗址(钏路市币舞町),其年代为绳文时代晚期至后绳文时代。样本的年龄表明,东钏路贝丘的海豚捕鱼活动大约在 4,200 年前结束,之后经过 1,000 多年的间隔,直到大约 3,000 年前币舞遗址的海豚捕鱼活动才恢复(图 3)。此外,特别是在太平洋斑纹海豚中,东钏路贝冢和币舞遗址出土的个体之间几乎没有共同的线粒体单倍型,这表明从这两个遗址出土的太平洋斑纹海豚属于遗传上不同的群体。已知距今4200年前,全球范围内发生过一次突然变冷干燥事件(4200年前事件)。例如,气候变化被认为是古埃及王国灭亡和美索不达米亚阿卡德帝国覆灭的原因之一。据报道,在日本列岛,这种突然的降温导致了当时最大的定居点之一的三内丸山遗址(青森市)的废弃,并导致了礼文岛的植被大规模变化。本研究提出的海豚种群更替和钏路地区海豚捕捞的暂停也可能与此有关
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
摘要 全基因组功能性遗传筛选已成功发现基因型-表型关系并设计新表型。虽然广泛应用于哺乳动物细胞系和大肠杆菌,但在非常规微生物中的使用受到限制,部分原因是无法准确设计此类物种的高活性 CRISPR 向导。在这里,我们开发了一种针对所选生物体(在本例中为产油酵母解脂耶氏酵母)的 sgRNA 设计实验计算方法。在不存在非同源末端连接(主要的 DNA 修复机制)的情况下进行负选择筛选,用于生成 SpCas9 和 LbCas12a 的单个向导 RNA (sgRNA) 活性谱。这种全基因组数据作为深度学习算法 DeepGuide 的输入,该算法能够准确预测向导活性。 DeepGuide 使用无监督学习来获取基因组的压缩表示,然后通过监督学习来映射具有指导活性的 sgRNA 序列、基因组背景和表观遗传特征。全基因组和选定基因子集的实验验证证实了 DeepGuide 能够准确预测高活性 sgRNA。DeepGuide 提供了一种生物体特异性的 CRISPR 指导活性预测因子,可广泛应用于真菌物种、原核生物和其他非常规生物。
电路表征学习在电子设计自动化 (EDA) 中越来越重要,它通过提高模型效率和准确性为各种下游任务提供服务。一项值得注意的工作 DeepSeq 通过对时间相关性进行编码开创了顺序电路学习。然而,它存在重大限制,包括执行时间延长和架构效率低下。为了解决这些问题,我们引入了 DeepSeq2,这是一个增强顺序电路学习的新框架,通过创新地将其映射到三个不同的嵌入空间——结构、功能和顺序行为——从而允许更细致的表征来捕捉电路动态的固有复杂性。通过采用高效的有向无环图神经网络 (DAG-GNN) 来绕过 DeepSeq 中使用的递归传播,DeepSeq2 显著缩短了执行时间并提高了模型的可扩展性。此外,DeepSeq2 采用了独特的监督机制,可以更有效地捕捉电路内的过渡行为。 DeepSeq2 在序贯电路表示学习中树立了新的基准,在功率估计和可靠性分析方面的表现优于之前的研究。
版权所有©2014年,科罗拉多大学的摄政员代表其员工:Daniel D Matlock MD MPH;丹尼·维吉尔(Danny Vigil);艾米·詹金斯MS;卡伦·梅利斯(Karen Mellis); Paul Varosy MD;弗雷德·马苏迪(Fred Masoudi)医学博士,MSPH; Angela Brega博士;大卫·马吉德(David Magid)医学博士,美国国立衰老研究所(K23AG040696)和以患者为中心的结果研究所(PI000116-01)的MPH资助。利益冲突:所有开发人员 - 无。上次更新08/13/2024。保留一些权利。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。 未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。 科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。 用户应对依赖此信息造成的任何损害负责。 内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。 此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。 任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。 这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。用户应对依赖此信息造成的任何损害负责。内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。
指挥与总参谋学院基金会,于2005年12月28日成立,是免税的非营利性教育基金会,为美国军队指挥和通用参谋学院提供资源和支持,以发展明天的军事领导人。CGSC基金会通过促进福利和增强CGSC的享有声望的教育计划来帮助推进军事艺术和科学的职业。CGSC基金会通过为西蒙斯中心,座谈会,会议和讲座等主要计划提供财务和研究支持,支持该学院的许多重点领域,以及资助和组织社区外展活动,这些活动有助于将美国公众与他们的陆军联系起来。所有西蒙斯中心作品均由“ CGSC基金会出版社”出版。