AI = 制造智能机器 标准模型:机器的智能程度决定了它们的行为能够实现目标 示例: • AlphaGo:赢得比赛 • SatNav:找到到达目的地的最短路线 • 自动化公司:最大化预期股东回报
人工智能 (AI) 的目标是创造智能机器。粗略地说,如果一个实体根据其感知选择预期可实现其目标的行动,则该实体被视为智能。1 将此定义应用于机器,可以推断出人工智能旨在创造根据其感知选择预期可实现其目标的行动的机器。现在,这些目标是什么?可以肯定的是,至少到目前为止,它们是我们赋予它们的目标;但是,尽管如此,它们的作用完全像机器自己的目标一样,并且它们完全确定。我们可以将其称为人工智能的标准模型:构建优化机器,插入目标,然后它们就可以运行了。这种模型不仅在人工智能中盛行,而且在控制理论(最小化成本函数)、运筹学(最大化回报总和)、经济学(最大化个人效用、GDP、季度利润或社会福利)和统计学(最小化损失函数)中也盛行。标准模型是二十世纪技术的支柱。不幸的是,这个标准模型是一个错误。如果我们只完整正确地写下我们的目标,那么设计对我们有益的机器是没有意义的。如果目标是错误的,我们可能会很幸运,注意到机器令人惊讶的令人反感的行为,并能够及时将其关闭。或者,如果机器比我们更聪明,问题可能是不可逆转的。机器越智能,对人类的后果就越糟糕:机器将更有能力以与我们的真实目标不一致的方式改变世界,并更有能力预见和防止任何干扰其计划的行为。1960 年,在看到亚瑟·塞缪尔的跳棋程序学会比其创造者更好地下棋后,诺伯特·维纳 (1960) 发出了明确的警告:
量子计算机在和平应用方面具有重大前景,但其中一个更直接的潜在应用是破解公钥加密技术。从更广泛意义上讲,这对全球数字基础设施的信息安全构成了重大风险。同时,量子计算的发展是一项典型的科学事业。开发这些技术所需的科学自由与减轻量子计算机相关风险的措施之间存在矛盾。解决这种矛盾的政策必须符合人类的科学权利,以及隐私权和言论自由权。在本文中,我将这些权利应用于量子计算的发展,为政府的量子计算政策提供指导。我的结论是,各国必须创造条件让科学研究蓬勃发展,即使这种研究可能带来重大的社会风险。这也适用于量子技术的研究和开发。在量子计算的背景下,这主要意味着投资开发和采用能够抵抗量子计算机攻击的替代加密技术。这也意味着规范这些技术用于不良应用。
1个新加坡639798 Nanyang Ave 639798的Nanyang Technological University,Nanyang Technological University的电气和电子工程学院微型和纳米电子和电子工程学院(CMNE); chunfei001@e.ntu.edu.sg(c.f.s.); e190013@ntu.edu.sg(l.y.x.l.); chongwei@ntu.edu.sg(c.w.t.); lxhu@ntu.edu.sg(L.H.); tancs@ntu.edu.sg(c.s.t.)2 CNRS-NTU-THALES研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,边界X块,6级,新加坡637553,新加坡; jxwang@ntu.edu.sg(J.W.); simon.goh@ntu.edu.sg(s.c.k.g.); philippe.coquet@cnrs.fr(p.c.); ehongli@ntu.edu.sg(H.L.)3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Universit é de Lille, 59650 Villeneuve d'Ascq, France 4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore * Correspondence: ebktay@ntu.edu.sg†两位作者对此手稿都同样贡献。
本文档中的插图和插图在创意共享归因下获得红色帽子的许可 - 相似于3.0未体育的许可证(“ CC-BY-SA”)。可以在http://creativecommons.org/licenses/by-sa/3.0/上获得CC-BY-SA的解释。根据CC-BY-SA,如果您分发此文档或对其进行改编,则必须为原始版本提供URL。
1 微电子与纳米电子中心(CMNE),电气与电子工程学院,南洋理工大学,50 Nanyang Ave,Singapore 639798,新加坡;chunfei001@e.ntu.edu.sg(CFS);e190013@ntu.edu.sg(LYXL);ChongWei@ntu.edu.sg(CWT);lxhu@ntu.edu.sg(LH);TanCS@ntu.edu.sg(CST)2 CNRS-NTU-THALES 研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,Border X Block,第 6 层,新加坡 637553,新加坡;jxwang@ntu.edu.sg(JW);simon.goh@ntu.edu.sg(SCKG);Philippe.Coquet@cnrs.fr(PC); ehongli@ntu.edu.sg (HL) 3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Université de Lille, 59650 Villeneuve d'Ascq, France 4 南洋理工大学机械与航空航天工程学院, 50 Nanyang Ave, Singapore 639798,新加坡 * 通讯地址:EBKTAY@ntu.edu.sg † 两位作者对本手稿的贡献相同。
可持续,材料必须丰富、廉价且无毒。然而,毒性并不是唯一的安全隐患。媒体经常报道因锂离子电池易燃而发生的事故。这些设备的易燃性通常与非水电解质有关。电解质也导致了毒性和高成本,部分原因是使用了氟化盐。[2–5] 解决这些缺陷对于钠离子电池尤为重要,因为可持续性和安全性至关重要。幸运的是,人们正在努力解决电池中使用的电解质的易燃性。减轻可燃性的一种常用策略是使用有机磷化合物作为电解质溶剂。[6–12] 有机磷化合物是一类常见的阻燃剂,用于各种应用。[13] 然而,其中一些化合物对环境和健康有负面影响。[14,15]
1. Noriphan XWR 部件号 L68250 加上 10% H 004 硬化剂 + 10% M206 稀释剂,涂抹于 VC102 碳纳米管墨水之上 2. Noriphan HTR-N 093 +15% 稀释剂 M201,涂抹于 XWR 层之上
1 能源效率基础设施集团是一个日益壮大且基础广泛的联盟,由超过 25 个行业团体、非政府组织、慈善机构和企业组成,旨在呼吁迅速改善英国住宅和建筑的能源效率政策。能源效率的大幅提高是实现净零排放和结束燃料贫困的可靠途径的试金石。EEIG 呼吁将能源效率作为国家基础设施投资优先事项,并设定相应的目标——到 2030 年实现所有住宅的能源性能证书 (EPC) 评级达到 C(从 A(最高效)到 G)——以及明确的治理安排、长期计划和启动资本预算来实现这一目标。虽然它代表了整个 EEIG 的观点,但本简报并不一定代表其个别成员的观点。
摘要使用可以在宿主植物中复制并系统地移动的病毒载体以传递细菌CRISPR组件,从而可以在整个植物水平上进行基因组编辑,并避免对劳动力密集型稳定转化的要求。但是,这种方法通常依赖于先前转化的植物,这些植物稳定地表达了CRISPR-CAS核酸酶。在这里,我们描述了使用烟草eTCH病毒(TEV; PotyVirus属)和马铃薯病毒X(PVX; PVX;属Potexvirus)得出的两个兼容的RNA病毒载体的成功无DNA的基因组编辑,这些病毒是在同一细胞中复制的。TEV和PVX载体分别表达CAS12A核酸酶和相应的指导RNA。这种新型的两场媒介系统改善了植物中无病毒诱导的基因组编辑的工具箱,并将促进繁殖更多营养,耐药性和生产性作物的努力。