除了声速之外,还有一个非常有趣的数据可以了解气体成分;MiniSonic- PSD(或 ISD)越来越多地用于新项目中的清管器检测。天然气管道主要使用泡沫清管器来清除油或其他沉积物。泡沫清管器不太硬,其速度与流速一样快,这给机械清管器信号检测器带来了问题。同样,通过清管器噪音听觉检测(一些公司称此类检测器为超声波)可以对新的泡沫清管器进行检测,但这种噪音可能低于使用过的清管器的环境噪音,存在无法检测的风险。因此,在这种情况下,通过超声波屏障进行检测具有许多优势。唯一的条件是要有良好的超声波信号电平。- 可以使用两个夹式探头,它们以相同的直径彼此相对安装,一个是发射器,另一个是接收器。信号限制来自气体压力(需要高压率)和管道厚度,这限制了频率选择并可能传输噪声。因此,在安装之前必须进行初步测试。- 确保信号的最佳解决方案是安装插入式传感器并让其刚好与管道内表面对齐。
1. 上表标题中列出的项目并非详尽无遗。在使用这些规范的特定合同中,可能会有更多项目。承包商全权负责完成油漆工作,包括根据招标文件在其工作范围内供应和制造的所有项目的预制底漆。2. 如果预安装/预制和车间底漆已经完成,则不应在现场重复相同的工作。如果底漆损坏严重且蔓延到大面积,主管工程师可能会决定并建议重新喷砂和重新涂底漆。如果需要,应根据本规范修复预制/安装前底漆。3. 单位内或场外区域的火炬线应按照上表序号 3 进行涂层。4. 对于有或没有耐火衬里的 MS 烟囱外表面和没有耐火衬里的内表面,应遵循上表序号 3 的油漆系统。 5. 对于 RCC 烟囱的外表面,应在按照条款 5.1.6 进行适当的表面处理后,涂 2 层 F-6B @ 100µ DFT/涂层,以获得 200 µ 的总 DFT。6. 如果油漆系统的面漆(顶部)涂层为 F-12,则应按照管道特定服务的颜色编码要求在铝漆上涂上色带。
人乳头瘤病毒(HPV)被认为是全球最常见的性传播感染 (STI) 之一。这种感染会影响外阴、阴道、阴茎、肛门、口咽和宫颈内表面等部位 [1] 。此外,这种感染已被确定为多种不同粘膜和皮肤上皮病变以及约 15 种不同癌症类型(包括口咽癌、肛门癌、阴茎癌和宫颈癌)的病因。迄今为止,医学专家已发现 150 多种已知的 HPV 类型和近 40 种已知会感染生殖器区域的菌株。 HPV 类型(6、11、42 和 44)不致癌,而其他持续性类型(如 16、18、31、33、35、45、51、52、58、59 和 68)则致癌 [2]。肛门生殖器疣和宫颈癌都是由 HPV 引起的性传播疾病,极为常见 [3]。宫颈癌是 15 至 44 岁女性中第二常见的癌症 [3]。宫颈癌是沙特 15 至 44 岁女性第六大死亡原因,也是沙特阿拉伯王国 (KSA) 第九大恶性肿瘤,是全球发病率最低的国家之一 [4]。因此,在沙特阿拉伯等保守社会中,HPV 的发生率较低,因为性关系受到严格的社会和宗教规则的限制 [5]。
细胞的边界是由生物膜形成的,即定义细胞内部和外部的屏障。这些障碍可以防止细胞内部产生的分子泄漏出来,并从扩散中散开分子;然而,它们还包含允许细胞采用特定分子并去除不需要的传输系统。此类运输系统授予膜选择性渗透性的重要特性。膜是动态结构,其中蛋白质漂浮在脂质的海中。膜的脂质成分形成了通透性的屏障,蛋白质成分充当泵和通道的传输系统,可将选定的分子进入和流出细胞。生物膜形成不对称结构,并且像具有流动性一样是流体,即具有各种细胞分子的易位酶。生物膜的不对称性可以部分归因于膜内蛋白质的不规则分布。生物膜的脂质双层由外部小叶和内部小叶组成,它们分布在两个表面之间,以在外表面和内表面之间形成不对称性。这个不对称的组织对于细胞功能(例如细胞信号传导)很重要。生物膜的不对称性反映了膜的两个传单的不同功能。如磷脂双层的流体膜模型所示,膜的外部和内部小叶在其组成中是不对称的。膜流动性是指
我们报告了激光驱动的聚合等离子体聚变靶的数值模拟。这些“倒置电晕”聚变靶可用于研究反向流动和聚合稀薄等离子体流,先前的实验已经证明了它们作为中子源的潜力。该方案由沿空心塑料壳内表面排列的燃料层组成,该塑料壳经过激光烧蚀并向内向靶中心扩展。这些靶中产生的等离子体流在汇聚时最初几乎不会发生碰撞,从而导致喷射流相互穿透时产生宽相互作用长度尺度和长相互作用时间尺度。这种动力学效应会影响组成离子的混合 - 单流体流体动力学模拟无法正确捕捉到这种现象。在这里,我们使用两种不同的方法进行数值模拟:(1) HYDRA 中的单流体模拟,以及 (2) Chicago 代码中的动能离子、流体电子混合粒子胞内 (PIC) 模拟。结果表明,最初几乎无碰撞的等离子体前沿相互渗透很深,导致空间和时间上相互作用区域更宽,从而导致显著的束流-束流融合。这两种方法对燃料层厚度对中子产额的影响做出了不同的、可测试的预测。
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
短纤维增强复合材料进气歧管的爆破试验 S. Curioni、T. Lanzellotto、G. Minak、A. Zucchelli、D. A. Caridi DIEM Alma Mater Studiorum – Università di Bologna Viale Risorgimento 2, 40136 Bologna Magneti Marelli Powertrain S.P.A.Via del Timavo 33, 40136 Bologna 电子邮件:tommaso.lanzellotto@unibo.it 摘要 考虑了由短玻璃纤维增强塑料制成的汽油发动机进气歧管,并研究了其在爆破试验过程中的机械行为。这项研究的目的是研究由于制造工艺而导致的材料各向异性和振动焊接参数过程对整体部件阻力的影响。关键词:短纤维复合材料,爆破试验,失效分析 引言 汽车行业对低密度材料的需求很高,因为发动机小型化、节能和降低成本的政策。复合材料具有这种特性,同时确保良好的机械强度和足够的耐久性;此外,它们还能显著降低噪音和吸收振动。这些材料取代了许多部件中的金属(特别是铝),例如进气歧管、空气滤清器外壳、正时齿轮和散热器风扇。特别是在进气应用中,通过更光滑的进气歧管内表面来提高性能。事实上,很容易获得低粗糙度值(通过模具抛光从 Ra 5 到 Ra 1.6 再到 0.4)(图 1a-b)。所研究的部件是汽车发动机中使用的进气歧管 (AIM)。其主要作用是将空气输送到发动机气缸中,以实现最佳燃烧。具体来说,AIM 功能包括更换每个气缸中的工作流体、用过滤空气填充以及减少在重新填充和排放阶段由压力波引起的噪音。组件设计的关键问题是重量轻、机械强度足够、耐用性和尽可能减小的整体尺寸 [1]。AIM 制造的传统解决方案基于铝合金铸造;然而,
a. 混凝土楼板厚度标称值为 4 英寸。如果回填前未提供此类楼板,则应将一根 36 英寸垂直 4 号钢筋嵌入基础,最大间距为 84 英寸,或者在基础中安装一个全深度标称 2 英寸深度 x 4 英寸宽度的键槽。b. 所有钢筋均应至少符合 ASTM A6175 40 级标准并变形。钢筋的放置位置应距墙内表面 3 英寸,并符合《国际建筑规范》第 18、19 和 21 章的规定。c. 用作回填的材料应为精心放置的中等或高渗透性粒状土壤,并应使用《国际建筑规范》第 1805.4 节规定的经批准的排水系统进行排水。当土壤中含有大量粘土、细粉砂或类似的低渗透性材料或膨胀土,或当回填材料未排干或墙体附近需要放置异常高的附加费时,必须使用专门设计的墙。d. 地基墙最大高度为 10 英尺,净高度为 9 英尺 8 英寸。e. 净地基墙高度是从地下室板顶部到地基墙顶部测量的。f. 支撑 3 层楼的混凝土地基墙厚度应增加 2 英寸。g. 支撑 3 层楼的砖石地基墙厚度应增加 4 英寸。h. 最大 24 英寸 oc 的 5 号钢筋是经批准的替代方案。i. 最大 30 英寸 oc 的 5 号钢筋是经批准的替代方案。j. 砖石墙的砂浆应为 M 型或 S 型,砖石应采用流动粘结法砌筑。k 如果砖石砌块的标称厚度为 12 英寸,则墙体可以不加固。
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。
《医疗机构消毒和灭菌指南 2008》由 William A. Rutala 等人编写。该指南概述了医疗保健专业人员在各种环境中(包括医院、门诊和家庭护理)使用消毒剂和灭菌产品的方法。它为不同类型的物品提供了建议,包括关键、半关键和非关键表面以及设备和仪器。该指南涵盖的主题包括:* 术语定义* 消毒和灭菌方法* 关键、半关键和非关键物品* 自 1981 年以来消毒和灭菌的变化* 医疗设备的消毒* 实施 Spaulding 方案的担忧* 内窥镜和其他器械的再处理* 艰难梭菌和其他新出现的病原体的灭活* 抗生素耐药细菌对消毒剂的敏感性* 表面、空气和微生物污染* 影响消毒和灭菌效果的因素该指南还讨论了各种消毒产品,包括氯化合物、甲醛和酒精,以及它们的作用方式。医疗设施消毒和灭菌方法概述:循证建议指南。该文件概述了清洁、消毒和灭菌患者护理医疗设备以及清洁和消毒医疗环境的首选方法。此处给出文章文本 灭菌与消毒:了解医疗保健环境中的差异 灭菌是一种使用压力蒸汽或干热等方法完全消除所有形式的微生物生命的过程。然而,一些医疗专业人士错误地使用“灭菌”来描述消毒,这涉及消除无生命物体上除细菌孢子以外的许多或所有病原微生物。消毒可以通过各种因素实现,包括液体化学品、湿式巴氏灭菌和用于较短暴露时间的杀菌剂。消毒的有效性受多种因素的影响,例如之前的清洁、微生物污染的类型和程度、杀菌剂的浓度以及物体的物理性质。与灭菌不同,消毒不是杀孢子剂,这意味着它不能通过一次使用杀死细菌孢子。然而,一些消毒剂可以有效对抗孢子,但需要长时间暴露。消毒有不同的级别,包括低级、中级和高级消毒,它们杀死微生物的能力各不相同。清洁是高水平消毒和灭菌之前必不可少的步骤,因为表面上的有机和无机物质会影响这些过程的有效性。净化可去除物体上的病原微生物,使物体可以安全处理或丢弃。抗菌剂通常仅用于无生命物体。防腐剂通常用于皮肤,而不是用于表面消毒,而消毒剂不用于皮肤消毒,因为它们可能会损害皮肤和其他组织。各种类型的抗菌剂,如杀病毒剂、杀真菌剂、杀细菌剂、杀孢子剂和杀结核剂,都可以消除其前缀所示的特定微生物。例如,杀细菌剂是一种杀死细菌的药剂。Earle H. Spaulding 于 30 多年前开发了一种合理的消毒和灭菌方法,根据使用过程中的感染风险将患者护理物品和设备分为关键、半关键和非关键类别。这种分类方案已被感染控制专业人员广泛采用和改进。如果关键物品被任何微生物污染,则会带来很高的感染风险。这些物品包括进入无菌组织或血管系统的物体,例如手术器械、心脏和尿道导管、植入物以及在无菌体腔中使用的超声波探头。大多数关键物品应以无菌形式购买或使用蒸汽或其他方法灭菌。半关键物品接触粘膜或破损皮肤,包括呼吸治疗和麻醉设备、某些内窥镜和其他医疗器械。这些物品需要使用化学消毒剂进行高水平消毒,以消除除少量细菌孢子外的所有微生物。FDA 批准使用过氧化氢酸作为高水平消毒剂,前提是满足某些因素。在为患者护理物品选择消毒剂时,还应考虑长期使用后的化学兼容性。高水平消毒可消除除细菌孢子以外的所有微生物,并在清洁后防止感染传播。腹腔镜和关节镜等进入无菌组织的设备最好在患者之间进行灭菌,但由于设计复杂性,美国有时也会使用高水平消毒。适当的清洁先于高水平消毒或灭菌。虽然灭菌是较新型号的首选,但目前尚未发布有关这些内窥镜在经过适当清洁和消毒后进行高水平消毒的疫情报告。用无菌水冲洗内窥镜可防止残留消毒剂引起的不良影响,也可以使用自来水或过滤水冲洗,然后用酒精冲洗并强制风干。以保护性的方式干燥和储存物品可防止其再次受到污染。水疗池等非关键表面使用中级消毒剂进行消毒,建议对吹嘴和肺量计管进行高水平消毒,但根据过去的研究,清洁肺量计的内表面被认为没有必要。每次治疗患者时,都要更换使用过的过滤器和近端吹嘴,以防止过滤器远端受到污染。非关键物品与完整皮肤接触但不与粘膜接触,由于其具有天然的微生物屏障,因此无需灭菌。非关键患者护理物品的例子包括便盆、血压袖带和计算机。这些物品通常可以在使用时就地进行消毒,而不必运送到中央处理区。低水平消毒剂(例如在环境保护署 (EPA) 注册的消毒剂)已被证明可有效对抗一系列微生物,包括细菌、酵母菌、分枝杆菌和病毒。但是,必须遵循制造商的使用说明,包括暴露时间和稀释比。非关键环境表面(例如床栏和床头柜)也可能藏有微生物,这些微生物可通过手接触或污染医疗设备传播。通常使用拖把和可重复使用的清洁布对这些表面进行消毒,但它们通常需要定期清洁和消毒以防止污染扩散。建议经常清洗拖把,并使用浸有消毒剂的一次性毛巾对非关键表面进行局部清洁。自 1981 年制定以来,CDC 环境控制指南经历了重大变化。首先,由于甲醛-酒精毒性大、使用量低,因此不再将其作为推荐的化学灭菌剂或高效消毒剂。增加了过氧化氢、过乙酸及其组合等新化学灭菌剂。3% 酚类和碘伏对细菌孢子和真菌的功效有限,因此被从高效消毒剂中删除。异丙醇和乙醇被排除在高效消毒剂之外,因为它们无法灭活细菌孢子和亲水性病毒。 1:16 稀释的戊二醛-苯酚-苯酚钠被取消了作为高效消毒剂的资格,因为它缺乏杀菌、杀真菌、杀结核和杀孢子活性。高效消毒所需的暴露时间已增加到 12 分钟或更长,具体取决于 FDA 批准的标签声明和科学文献。该指南现在包括新的主题,例如新出现的病原体、生物恐怖分子、血源性病原体的灭活以及内窥镜等复杂医疗器械的消毒。医疗机构消毒指南(包括 Spaulding 方案的实施)引起了人们对过度简化的担忧,因为它在处理复杂医疗设备和某些传染性病原体方面存在局限性。这些物品不能进行蒸汽灭菌,因为它们对热敏感;此外,使用环氧乙烷进行灭菌对于患者之间的常规使用来说太耗时了。但是,缺乏证据表明对这些物品进行灭菌可以改善患者护理。许多较新的型号可以承受蒸汽灭菌,这是关键物品的首选方法。实施 Spaulding 方案的一个问题是处理与接触无菌身体组织的关键器械一起使用的半关键器械,如内窥镜。例如,用于上消化道检查的内窥镜在与无菌活检钳一起使用时或用于食管静脉曲张大量出血的患者时不应被视为半关键物品。提供高水平消毒并去除细菌孢子以外的微生物,该设备不代表感染风险。尚未有报告称内窥镜经过适当的高水平消毒后会感染产孢细菌。另一个问题是,高水平消毒的最佳接触时间尚未确定或因专业组织而异,导致对半关键物品的消毒策略不同。在找到更简单有效的替代方案之前,遵循本指南和 CDC 指南是明智之举。医生使用内窥镜诊断和治疗多种疾病,但尽管与使用内窥镜相关的感染发病率很低,但与受污染的内窥镜相关的医疗相关疫情比与任何其他医疗设备相关的疫情都要多。为防止医疗相关感染的蔓延,所有热敏内窥镜在每次使用后都必须妥善清洁并进行高水平消毒。高水平消毒可以消灭所有微生物,尽管当微生物数量较多时,可能会有少数孢子存活。柔性内窥镜在每次使用过程中都会受到高水平的微生物污染,生物负荷水平从 105 到 1010 CFU/mL 不等。清洁可将微生物污染水平降低 4-6 log10。研究表明,彻底清洁可消除内窥镜中的微生物污染 104,105。同样,其他研究人员发现,只有在正确清洁设备后,环氧乙烷灭菌或浸泡在 2% 戊二醛中 20 分钟才有效 106,13,14。FDA 医疗机构消毒和灭菌指南 (2008) 强调使用清除的液体化学灭菌剂和高水平消毒剂来再处理柔性内窥镜等热敏感医疗设备的重要性。目前,FDA 批准的配方包括 >2.4% 戊二醛、0.55% 邻苯二甲醛 (OPA) 和其他具有已证实抗菌活性的配方。然而,一些氧化化学物质会损坏内窥镜,这突显出用户需要咨询设备制造商有关杀菌剂兼容性的信息。使用 FDA 批准的产品,建议使用戊二醛或使用过氧乙酸的自动液体化学灭菌工艺。美国胃肠内镜学会 (ASGE) 建议不要使用含表面活性剂的戊二醛溶液,因为冲洗时残留物会很困难 108。邻苯二甲醛已成为许多医疗机构中戊二醛的替代品,具有无刺激和减少暴露监测等优点。未经 FDA 批准的消毒剂,包括碘伏、氯溶液、酒精、季铵化合物和酚类,应强烈反对使用,因为缺乏经过证实的功效或材料不相容。鉴于本文文本坚持既定规则导致了与胃肠内窥镜 (8) 和支气管镜 (7)、(12) 相关的感染。向 FDA 设备和放射健康中心报告任何与设备相关的问题至关重要。一项调查发现,即使在消毒和灭菌程序完成后,71 个胃肠内窥镜内部通道的细菌培养物中仍有近 24% 的细菌生长过多,其中 9 个机构使用市场上不再提供的产品(6 个使用 1:16 戊二醛苯酚盐)或未经 FDA 批准的高效消毒剂。与手动再处理相比,自动内窥镜再处理器具有多项优势,包括步骤自动化和标准化、减少错过必要步骤的风险以及减少人员接触消毒剂或灭菌剂。然而,AER 故障与感染爆发 (7)、(133) 或定植 (134) 有关。此外,AER 水过滤系统可能无法提供可靠的“无菌”冲洗水 (135)、(136)。正确建立 AER 和设备之间的连接器对于消毒剂和冲洗水的完全流动至关重要。有些内窥镜需要使用 2 至 5 毫升注射器进行手动再处理,例如具有升降线通道等功能的十二指肠镜,需要大多数 AER 无法达到的冲洗压力。涉及可拆卸部件的疫情 (138)、(139) 强调了在高水平消毒或灭菌之前进行清洁的重要性。一些阀门现在可用作一次性或蒸汽灭菌产品,而 AER 和内窥镜需要进一步开发以防止成为传染源。带有一次性组件的内窥镜可能为传统化学消毒/灭菌提供替代方案。新技术包括可吞咽的相机,可传输小肠的彩色图片。为确保正确再处理,应严格遵守已发布的指南 (12)、(38)、(108)、(113-116)、(145-148)。不幸的是,审计显示人员并未始终遵守再处理指南 (149-151),疫情仍在继续发生 (152-154)。负责再处理内窥镜器械的每位人员都必须接受初始和年度能力测试。用液体化学灭菌剂对内窥镜进行消毒或灭菌的过程包括泄漏测试后的五个步骤:1.清洁:机械清洁内外表面,包括刷内部通道和用水和洗涤剂或酶清洁剂冲洗每个通道。2.消毒:将内窥镜浸入高效消毒剂(或化学灭菌剂)中,确保接触所有可触及的通道,如抽吸/活检和空气/水通道。3.冲洗:用无菌水或过滤水冲洗内窥镜和所有通道,然后用酒精擦干插入管和内通道后再存放。以防止再污染和促进干燥的方式存放内窥镜,如垂直悬挂。干燥对于降低冲洗水中的微生物再污染风险至关重要。一项研究表明,再处理后的内窥镜在强制空气循环下垂直存放时通常不会滋生细菌。其他研究发现,所有内窥镜在经过高水平消毒后均无菌,后续评估中只有少数内窥镜呈阳性。所有冲洗样品均保持无菌。虽然一些研究人员建议仅使用无菌水或过滤水,因为自来水中存在微生物,但已发表的指南和科学文献支持使用自来水,然后用酒精冲洗并强制风干。此外,遵循此方案时未发现疾病传播的证据。一项研究发现过滤后的冲洗水是细菌污染的来源,但引入热水冲洗管道系统可降低阳性培养的频率。当医务人员将内窥镜放在推车上时,可能不清楚它们是否已正确清洁。一些指南建议在使用前对某些内窥镜进行再处理,而其他指南则不建议。专业组织普遍认为,只有在原始过程正确的情况下才应进行再处理。为了确保质量,一些机构会对处理后的内窥镜进行随机细菌测试。再处理的内窥镜除了少量无害微生物外,不应含有细菌。尽管指南建议定期检测最终冲洗水,但尚未建立标准检测方法。此外,没有证据表明对再处理后的内窥镜或其冲洗水进行常规培养可以预防感染。对内窥镜和水进行取样涉及评估消毒剂的有效性和清洁程序。还探索了评估内窥镜清洁的新方法。然而,没有一种方法被广泛接受为标准。内窥镜不应存放在与受污染仪器接触过的便携箱中。这些手术箱必须定期清洁和处理,以防止再次污染。定期进行感染控制巡查和遵守政策对于预防患者感染至关重要。腹腔镜和关节镜周围的感染控制实践仍存在争议,一些人主张将高水平消毒作为最低标准,而另一些人则建议将灭菌作为首选方法。高水平消毒的支持者指出,会员调查和机构经验表明感染风险较低(0.2% 过氧乙酸。相反,浓度为 1000 ppm 有效氯的二氯异氰尿酸钠在 10 分钟时对艰难梭菌孢子的 log10 减少因子较低。OSHA 的血源性病原体标准要求在接触血液或其他潜在传染性物质后使用消毒剂清洁和净化设备和表面。该标准强调了 EPA 注册的消毒剂的重要性,特别是那些标明对 HIV 和 HBV 有效的消毒剂。然而,1997 年,OSHA 修改了其政策,在满足某些条件的情况下考虑在非血液污染的表面使用 EPA 注册的消毒剂。研究表明,对于大量血液溢出,建议使用 1:10 的 EPA 注册次氯酸盐溶液进行最终稀释,以最大限度地降低清理过程中因经皮肤损伤而感染的风险。新兴病原体如隐孢子虫、幽门螺杆菌、大肠杆菌 O157:H7、轮状病毒、人乳头瘤病毒、诺如病毒和严重急性呼吸道综合征 [SARS] 冠状病毒等受到日益关注。此处给出文章文本已研究了各种病原体对化学消毒剂和灭菌剂的敏感性。大多数新兴病原体都对目前可用的化学品敏感,但也有一些例外。小隐孢子虫对氯和医疗保健中使用的大多数常见消毒剂具有抗性,包括乙醇、戊二醛和次氯酸盐。然而,过氧化氢可以灭活大于 3 log10 的 C. parvum。蒸汽、EtO 和过氧化氢气体等离子体等灭菌方法可以完全灭活 C. parvum。其他病原体,如大肠杆菌 O157:H7,通常对消毒剂敏感。研究表明,低浓度(1 ppm)的氯可在 1 分钟内消除约 4 log10 的大肠杆菌。电解氧化水也可有效降低大肠杆菌的活力。使用季铵化合物、酚类和次氯酸盐可显著降低大肠杆菌水平。研究表明,含氯化合物的消毒剂可有效对抗接种在苜蓿种子或芽苗以及牛肉胴体表面的大肠杆菌。研究了消毒剂对抗幽门螺杆菌的有效性,结果表明乙醇(80%)和戊二醛(0.5%)具有很强的杀菌作用。然而,有机物的存在会降低某些消毒剂(如聚维酮碘和次氯酸钠)的功效。研究了各种方法对抗幽门螺杆菌和其他病原体的功效。用肥皂和水清洗无法消除内窥镜中的幽门螺杆菌,浸泡在乙醇或甲醇中也无法消除。但是,用 2% 戊二醛消毒可有效消除细菌。一些研究发现,某些消毒剂(如酚类和季铵化合物)在使用后一分钟内即可有效对抗轮状病毒。一项人体挑战研究表明,含有乙醇和苯酚的消毒喷雾可有效阻断轮状病毒从受污染表面转移到指腹。然而,关于酒精或其他消毒剂对抗 HPV 或诺如病毒的有效性的信息有限,因为这些病毒不能在组织培养中生长。环境表面消毒不当被认为是导致诺如病毒传播的原因。研究发现,FCV(猫杯状病毒)对各种消毒剂敏感。氯、戊二醛和碘基产品可有效灭活病毒,而季铵化合物、洗涤剂和乙醇则无法完全消灭病毒。稀释至 1000 ppm 有效氯的漂白剂可在一分钟内将 FCV 传染性降低 4.5 个对数。其他有效的消毒剂包括加速过氧化氢、二氧化氯、四种季铵化合物的混合物以及乙醇和季铵化合物的组合。发现季铵化合物可在 10 分钟内对抗硬表面上的干燥 FCV 悬浮液。70% 的乙醇和 70% 的 1-丙醇可在 30 秒内将 FCV 降低 3-4 个对数。CDC 宣布,一种以前未知的人类冠状病毒是 SARS 的主要假设,它可导致胃肠炎。研究已经调查了化学杀菌剂对冠状病毒的杀病毒功效。经研究发现,次氯酸钠、70% 乙醇和聚维酮碘在接触一分钟后即可有效对抗冠状病毒 229E。聚维酮碘已被证实可有效对抗人类冠状病毒 229E 和 OC43。70% 乙醇和聚维酮碘在一分钟内可完全灭活 SARS 冠状病毒,2.5% 戊二醛在五分钟内也可完全灭活 SARS 冠状病毒。由于 SARS 冠状病毒在室温下至少可稳定存在一到两天,因此表面可能成为污染源,应进行消毒。应使用 EPA 注册的消毒剂或 1:100 稀释的家用漂白剂和水进行表面消毒。对于已知或疑似 SARS 患者,无需改变半危及和危及医疗设备的高水平消毒和灭菌方法。处理阿米巴原虫污染时,高水平消毒的暴露时间至关重要,因为如果处理不当,阿米巴原虫污染会促进感染305。如果这些微生物存在于器械上,可能需要延长浸泡时间或使用其他消毒剂来防止进一步传播。鉴于对生物恐怖主义的担忧,出版物强调了与生物制剂相关的风险306、307。CDC 已将几种可迅速传播、导致高死亡率并引发公众恐慌和社会混乱的高优先级病原体归类308。这些病原体包括炭疽芽孢杆菌(炭疽)、鼠疫耶尔森氏菌(鼠疫)、天花、肉毒梭菌毒素(肉毒中毒)、土拉弗朗西斯菌(土拉菌病)、丝状病毒(埃博拉出血热、马尔堡出血热)和沙粒病毒(拉沙[拉沙热]、胡宁[阿根廷出血热])308。关于灭菌和消毒在生物恐怖主义中的作用,可以注意到这些药剂对杀菌剂的敏感性与其他相关病原体相似309。例如,天花与牛痘相似,而炭疽杆菌与萎缩芽孢杆菌相似312。这表明人们可以从现有的遗传相似生物数据中推断。此外,许多生物恐怖剂在环境中很稳定,使受污染的表面或污染物成为潜在的传播源315。此外,在评估可能接触生物恐怖剂的患者时,目前的消毒和灭菌实践似乎适合管理患者护理设备和环境表面310。虽然次氯酸钠对表面消毒有效,但在发生生物恐怖袭击时可能需要特殊程序311。工程生物恐怖剂对消毒和灭菌过程不太敏感的可能性在理论上令人担忧309。与化学品接触相关的风险涉及多种因素,包括接触时间、强度和途径。这可能导致急性或慢性毒性。急性毒性通常是由于化学物质意外泄漏而发生的,导致突然接触,可能需要紧急救治。另一方面,慢性毒性是由于长期接触较低浓度的化学品而引起的。雇主有责任告知工人潜在的危害并实施控制措施。职业安全与健康管理局 (OSHA) 要求危险化学品制造商提供材料安全数据表 (MSDS),可能接触到这些材料的员工必须随时可以获取。许多与医疗保健相关的化学品都设定了接触限值,OSHA 公布的限值具有法律效力。这些限值通常表示为 8 小时工作日和 40 小时工作周的时间加权平均值。例如,环氧乙烷 (EtO) 的允许暴露极限 (PEL) 为 8 小时平均 1.0 ppm。美国疾病控制中心国家职业安全与健康研究所 (NIOSH) 建议的暴露极限 (REL) 可在整个工作寿命内保护工人的健康和安全。这些准则还考虑了皮肤影响和全身吸收,这些吸收可能在暴露极限以下并通过皮肤接触而不吸入而发生。有效使用消毒剂对于各种环境中的患者安全至关重要。化学消毒剂可以在处理前用亚硫酸氢钠或甘氨酸等化学品中和。然而,这种方法存在毒副作用和再污染等风险。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保安全的患者环境。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可用洗涤剂清洗,而血液溢出应根据 OSHA 规定处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。一次性物品也可以使用,可重复使用的物品可以在医院消毒。一些环保组织提倡使用“环保”产品替代商业杀菌剂。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。由于在门诊和家庭环境中接受护理的患者数量不断增加,适当的消毒对于预防感染至关重要。应遵循 Spaulding 分类方案以确保患者环境的安全。在家庭护理中,建议使用漂白剂、酒精和过氧化氢对可重复使用的物品进行消毒。非关键物品可以使用洗涤剂进行清洁,而血液溢出应根据 OSHA 规定进行处理。关键物品的消毒在家庭中不切实际,但理论上可以使用化学消毒剂或煮沸来完成。也可以使用一次性物品,可重复使用的物品可以在医院进行消毒。一些环保组织提倡使用“环保”产品作为商业杀菌剂的替代品。然而,这些替代品通常对某些细菌无效,未经 EPA 适当注册不应使用。消毒剂在家庭环境中对公共卫生的有效性仍不清楚。然而,一些关键点是显而易见的:许多家庭区域,特别是厨房和浴室空间,都存在微生物污染,使用次氯酸盐可以有效减少细菌的存在,保持适当的卫生标准可以降低感染风险,实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站是可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。实验室研究证实了许多商业消毒剂对常见病原体的功效及其阻止病原体通过表面传播的能力,某些官方认可的网站可作为可靠的信息来源。