Rombola A.G.,Torri C.,Vassura I.,Venturini E.,Reggiani R.,Fabbri D.(2022)。生物炭修订对两年野外实验中农业土壤的有机物和溶解有机物组成的影响。总环境科学,812,1-11 [10.1016/j.scitotenv.2021.151422]。
ISSN 印刷版:2617-4693 ISSN 在线版:2617-4707 IJABR 2024; 8(11): 869-878 www.biochemjournal.com 收稿日期:2024-06-09 接受日期:2024-09-10 Kuldeep Kumar 农业学院(遗传学和植物育种),Maharishi Markandeshwar(视为大学)Mullana Ambala,哈里亚纳邦,印度 Avimanyu Palit 博士,研究学者,农学系,Bidhan Chandra Krishi Viswavidyalaya,西孟加拉邦,印度 Simran Sindhu,农学硕士,Chaudhary Charan Singh 哈里亚纳农业大学,哈里亚纳邦,印度 Divya D,博士研究学者,土壤科学系,Keladi shivappa Nayaka 农业与园艺科学大学,iruvakki shimoga,卡纳塔克邦,印度 Yogita 助理教授,农学院,Maharishi Markandeshwar(视为)大学,Mullana,Ambala,哈里亚纳邦,印度 Rajeeb Lochan Moharana 助理教授,种子科学与技术,OUAT 农业学院,Bhawanipatna,Kalahandi,奥里萨邦,印度 Smriti Hansda 助理教授(SWCE),农业学院,Bhawanipatna,奥里萨邦农业与技术大学,印度奥里萨邦 Anil Kumar 助理教授,农学系,Eklavya 大学,达莫,中央邦,印度 通讯作者:Anil Kumar 助理教授,农学系,Eklavya 大学,达莫,中央邦,印度
2018年全球3.48亿吨的全球塑料生产迅速导致了广泛的环境污染,尤其是在陆地生态系统中。本研究研究了农业土壤中的微塑料,令人震惊。≤5mm的颗粒被定义为微塑料,对地球环境产生不利影响。由于其生态重要性,土壤充当了重要的微塑料水槽,影响了土壤,植物健康和微生物活性。各种因素有助于农业土壤中的微塑性污染,包括塑料覆盖,肥料,农产品(青贮网,麻线),污水污泥,风化和其他间接过程。这些微塑料迁移,威胁土壤完整性和生物多样性。土壤微塑料的大小,体积分数和聚合物分析。常见材料包括聚乙烯,聚丙烯,聚酰胺,聚苯乙烯,聚氯化氯化物和聚酯。技术,包括光学显微镜和光谱,提取和分析微塑料。这项全面的审查要求对农业土壤中微塑料的生态影响提高人们的关注。它强调了管理塑料解决环境挑战的重要性。综合的环境评估强调了微塑料与土壤生态系统之间的复杂关系,提供了对潜在风险的见解,并提出了打击这种迫在眉睫的环境威胁的策略。
农民面临的问题之一是无法对农田进行完整、实时和准确的观察。本文提出的系统可帮助农民使用基于 Web 的应用程序随时随地了解农田状况。该原型的主要目标是通过了解土壤内外的条件(总共 14 个参数)来减少农产品生长过程中的失败。物联网 (IoT) 技术用于实现原型,它由传感器面板、控制器、消息代理和后端服务组成。所有获得的实时创建和测试的数据都显示在应用程序上。除了实时数据显示外,该系统还包括监控历史记录、警报和站点位置管理。
文章描述了由于矿物地板中有机物质而导致有机碳的基本机制。除了在腐殖质形成的背景下对最重要的术语的定义,还描述了土壤中有机物质的各种进入路径以及销售和存储中最重要的过程。碎屑球和根际的特殊作用被解释为有机物质中高且特异性的土壤室。不同土壤结合有机碳及其在可能的碳饱和度方面的极限的潜力。从这些考虑因素中,腐殖质的选项得出了,例如:B.改善了培养,减少有机物质供应到土壤中或有机物质的分解。这一专家贡献针对的是直接或间接受土地经济活动影响或对特定科学研究机构,政府机构,非政府组织和私营部门公司产生影响的所有人或团体。
摘要:这项工作旨在评估土壤特征的影响以及尼古龙的施加量对土壤中降解率的影响。在波斯尼亚和黑塞哥维那的三个地区收集了土壤样品 - Manjača,Kosjerovo和Tunjice。该实验是在受控实验室条件下进行的。基于尼科磺隆(40 g a.s./l,OD)的植物保护产品的浓度为0.075、0.15和0.30 mg A.S./k./kg的土壤。尼古拉氏龙残基,然后分析LC-MS/MS。土壤被归类为粉质壤土,具有机械组成和化学性质的变化。在略微碱性的土壤中,与酸性土壤中DT 50(9.43-16.13天)相比,尼古隆的半衰期(Dt 50)增加(43.31天)。结果表明,土壤特征和施用浓度显着影响尼科磺磺酸杆菌持续性。因此,可以认为,尼科苏硫龙应用于波斯尼亚和黑塞哥维那的粉质壤土,对随后的农作物和环境构成了低风险。
摘要:为了解决氧化亚氮 (N2O) 排放量变化带来的不确定性,建模方法应运而生,成为研究两种排放过程(即硝化和反硝化)以及表征土壤、大气和作物之间相互关联动态的有效方法。本研究对广泛使用的在不同种植制度和管理措施下模拟氧化亚氮 (N2O) 的模型进行了全面概述。我们选择了基于过程的模型,优先考虑那些在近期发表的科学论文中已有完善算法记录或已发布源代码的模型。我们回顾并比较了用于模拟氧化亚氮 (N2O) 排放量的算法,并采用了统一的符号系统。选定的模型(APSIM、ARMOSA、CERES-EGC、CROPSYST、CoupModel、DAYCENT、DNDC、DSSAT、EPIC、SPACSYS 和 STICS)根据其硝化和反硝化过程建模方法进行分类,区分了对微生物库的隐式或显式考虑,并根据这些过程的主要环境驱动因素(土壤氮浓度、温度、湿度和酸度)的形式化进行分类。此外,还讨论了模型的设置和性能评估。通过对这些方法的评估,我们发现土壤化学-物理性质和气候条件是氮循环及其导致的气体排放的主要驱动因素。
估计每年有2.58亿吨塑料进入土壤。连接持续类型的微型塑料(MP),对可生物降解的塑料的需求将增加。仍然有许多关于塑料污染的未知数,并且一个很大的差距是从国会议员释放的溶解有机物(DOM)的命运和组成以及它们与农业系统中土壤微生物的相互作用方式。在这项研究中,将聚乙烯MPS,在不同程度上进行照片,并在不同水平的不同水平的农业土壤中添加了牙乳酸MP,并孵育100天以解决该知识差距。我们发现,添加MP后,降解低芳香性的不稳定成分,导致芳香和氧化程度增加,分子多样性降低,并改变了土壤DOM的氮和硫含量。terephathate,乙酸,草酸盐和L-乳酸在多乙烯MPS释放的DOM释放的DOM中,是由聚乙烯MPS释放的DOM和硝酸盐的,是土壤微生物组的主要分子。MPS释放的DOM代谢的细菌主要集中在蛋白质细菌,静脉杆菌和杆菌中,而真菌主要集中在Ascomycota和Basidiomycota中。我们的研究提供了对MPS释放的DOM的微生物转化及其在农业土壤中DOM进化的影响的深入了解。
摘要:传统农业在保证土壤生育能力和可持续粮食生产方面面临着重要挑战。世界上许多农业土壤都被降级,目前正在制定多种策略来恢复它们。对有益土壤微生物的研究已引起了越来越多的兴趣,因为它们在可持续农业发展中的作用相关。生态系统服务的平衡和维护,例如生物量转化,营养循环,植物生长和健康,直接取决于土壤微生物活性。因此,促进其建立和传播很重要。一种有利于土壤生物多样性的古老技术是堆肥的生产和应用。虽然许多研究集中在植物种植的益处上,但较少的研究集中在土壤微生物群的好处。这篇综述的目的是阐明微生物群在堆肥过程中的作用及其对农业土壤微生物的影响。审查介绍了堆肥过程中涉及的微生物的知识和重要性的进步,以及堆肥如何促进有益的微生物财团的维持和繁殖及其在农业领域中的生态系统功能,从而向更可持续和弹性的农业转移。
