发动机:SITEC 275(五十铃 6SD1-TC) 类型:6 缸、4 冲程、SOHC、直喷柴油机。可变几何涡轮增压器 (VGT) 和空对空中冷器。可调式滚柱式摇臂。 排量:9,839 cc 压缩比:16.0:1 缸径 x 冲程:120 x 145 mm 最大功率 (DIN NET):206 kW @ 2,000 RPM 最大扭矩 (DIN NET):1030 Nm @ 1,400 RPM 排放标准:ADR 80/00(欧 III) • 板式油冷却器。28.4 L 油容量。独立的全流量主滤清器和旁通油滤清器。 冷却系统 • 6 叶片、直径 600 mm 的冷却风扇,带有恒温控制粘性离合器• 散热器正面面积:5,088 cm2。• 29 L 冷却液容量。进气系统 • 垂直进气口安装在驾驶室后部。两级 Donaldson 空气净化器,主滤芯为 280 x 380 mm,副滤芯为 160 x 350 mm。• 610 x 540 mm 空对空中冷器。燃油系统 • Denso 共轨燃油喷射。独立的燃油滤清器和水分离器。• 400 L 铝制油箱(长型号)。• 180 L 钢制油箱(FVZ Medium、PTO 和 Auto 型号)。发动机驱动 PTO(仅适用于 FVZ Medium PTO 型号)• 常啮合飞轮驱动。PTO 以 1.1 倍发动机转速旋转。• 最大输出扭矩为 440 Nm。• 从发动机后部看,逆时针旋转。
发动机:SITEC 275(五十铃 6SD1-TC) 类型:6 缸、4 冲程、SOHC、直喷柴油机。可变几何涡轮增压器 (VGT) 和空对空中冷器。可调式滚柱式摇臂。 排量:9,839 cc 压缩比:16.0:1 缸径 x 冲程:120 x 145 mm 最大功率 (DIN NET):206 kW @ 2,000 RPM 最大扭矩 (DIN NET):1030 Nm @ 1,400 RPM 排放标准:ADR 80/00(欧 III) • 板式油冷却器。28.4 L 油容量。独立的全流量主滤清器和旁通油滤清器。 冷却系统 • 6 叶片、直径 600 mm 的冷却风扇,带有恒温控制粘性离合器• 散热器正面面积:5,088 cm2。• 29 L 冷却液容量。进气系统 • 垂直进气口安装在驾驶室后部。两级 Donaldson 空气净化器,主滤芯为 280 x 380 mm,副滤芯为 160 x 350 mm。• 610 x 540 mm 空对空中冷器。燃油系统 • Denso 共轨燃油喷射。独立的燃油滤清器和水分离器。• 400 L 铝制油箱(长型号)。• 180 L 钢制油箱(FVZ Medium、PTO 和 Auto 型号)。发动机驱动 PTO(仅适用于 FVZ Medium PTO 型号)• 常啮合飞轮驱动。PTO 以 1.1 倍发动机转速旋转。• 最大输出扭矩为 440 Nm。• 从发动机后部看,逆时针旋转。
发动机:SITEC 275(五十铃 6SD1-TC) 类型:6 缸、4 冲程、SOHC、直喷柴油机。可变几何涡轮增压器 (VGT) 和空对空中冷器。可调式滚柱式摇臂。 排量:9,839 cc 压缩比:16.0:1 缸径 x 冲程:120 x 145 mm 最大功率 (DIN NET):206 kW @ 2,000 RPM 最大扭矩 (DIN NET):1030 Nm @ 1,400 RPM 排放标准:ADR 80/00(欧 III) • 板式油冷却器。28.4 L 油容量。独立的全流量主滤清器和旁通油滤清器。 冷却系统 • 6 叶片、直径 600 mm 的冷却风扇,带有恒温控制粘性离合器• 散热器正面面积:5,088 cm2。• 29 L 冷却液容量。进气系统 • 垂直进气口安装在驾驶室后部。两级 Donaldson 空气净化器,主滤芯为 280 x 380 mm,副滤芯为 160 x 350 mm。• 610 x 540 mm 空对空中冷器。燃油系统 • Denso 共轨燃油喷射。独立的燃油滤清器和水分离器。• 400 L 铝制油箱(长型号)。• 180 L 钢制油箱(FVZ Medium、PTO 和 Auto 型号)。发动机驱动 PTO(仅适用于 FVZ Medium PTO 型号)• 常啮合飞轮驱动。PTO 以 1.1 倍发动机转速旋转。• 最大输出扭矩为 440 Nm。• 从发动机后部看,逆时针旋转。
发动机:SITEC 275(五十铃 6SD1-TC) 类型:6 缸、4 冲程、SOHC、直喷柴油机。可变几何涡轮增压器 (VGT) 和空对空中冷器。可调式滚柱式摇臂。 排量:9,839 cc 压缩比:16.0:1 缸径 x 冲程:120 x 145 mm 最大功率 (DIN NET):206 kW @ 2,000 RPM 最大扭矩 (DIN NET):1030 Nm @ 1,400 RPM 排放标准:ADR 80/00(欧 III) • 板式油冷却器。28.4 L 油容量。独立的全流量主滤清器和旁通油滤清器。 冷却系统 • 6 叶片、直径 600 mm 的冷却风扇,带有恒温控制粘性离合器• 散热器正面面积:5,088 cm2。• 29 L 冷却液容量。进气系统 • 垂直进气口安装在驾驶室后部。两级 Donaldson 空气净化器,主滤芯为 280 x 380 mm,副滤芯为 160 x 350 mm。• 610 x 540 mm 空对空中冷器。燃油系统 • Denso 共轨燃油喷射。独立的燃油滤清器和水分离器。• 400 L 铝制油箱(长型号)。• 180 L 钢制油箱(FVZ Medium、PTO 和 Auto 型号)。发动机驱动 PTO(仅适用于 FVZ Medium PTO 型号)• 常啮合飞轮驱动。PTO 以 1.1 倍发动机转速旋转。• 最大输出扭矩为 440 Nm。• 从发动机后部看,逆时针旋转。
工作原理 Unique Control 使用空气弹簧,与传统机械弹簧相比,可在明显较低的气压下运行。集成智能自动化只需按下一下即可进行自我配置,包括阀门尺寸识别以及根据提供的工作气压进行校准。执行器设计为可轻松进行现场配置,可常开 (NO) 或常闭 (NC)。免维护但可维修的执行器设计经过测试,可执行超过一百万次冲程。Unique Control 具有 360 度指示灯,用于显示状态。它还提供了监控工作气压状态的机会,可识别漏气或气压故障。
抽象背景:冲程后锥体外疾病(PSEDS)显着损害了功能结果,但在中风种群中的特征仍然很差。了解PSED的频率,风险因素和健康影响对于改善中风管理和康复策略至关重要。目的:评估势头后锥体外疾病对基于医院人群的功能结果的发生率,风险变量和影响。患者和方法:该嵌套的病例对照研究是从2017年10月到2020年9月进行的。在筛查的1,971例急性脑血管中风患者中,有167个符合纳入标准,分为69例PSED和98个对照。使用广泛的神经检查,大脑成像和异常的非自愿运动量表(AIMS)用于诊断PSED。使用IBM SPSS 21.0中的逻辑回归分析了风险因素。结果:3.5%的中风患者中发育的PSED。重大危险因素包括年龄较大(OR = 1.067,95%CI:1.037–1.097),糖尿病Mellitus(OR = 4.476,95%CI:1.987-8.083)和深病变部位(OR = 3.477,95%CI:1.683-7.183-7.184)。PSED患者更有可能表现出痴呆症(47.8%vs. 19.4%,p = 0.006),功能性结果较差,如Barthel指数所衡量的那样(82.6%的结果较差,在对照组中的61.2%,P = 0.003)。结论:冲程后锥体骨外疾病与严重的功能障碍有关,并且在患有特定危险因素(例如高龄,糖尿病和深脑病变)的患者中更有可能。简介早期识别和对这些危险因素的量身定制管理可能会改善PSED风险的中风患者的预后。关键字:势后锥体脑外侧疾病,唱片,肌张力障碍,帕金森氏症,巴特尔指数。
随着工业革命期间蒸汽机的广泛应用,热力学作为一门物理理论应运而生,它能够描述和优化这些设备的性能 [1]。虽然现代热力学已远远超出了其原有的范围,但热机仍然是研究热力学机制的经典系统。热机不仅具有明确的实际应用,而且还为研究系统热力学性质如何演变提供了一种范例——应用范围从生物过程、气候系统到黑洞 [2-4]。量子系统受固有涨落和明显的非平衡性影响,为应用热力学框架带来了新的挑战 [5]。尽管如此,量子热机 [5,6] 为以易于理解的方式研究量子系统中的热力学行为提供了天然的基础。例如,在等容冲程中,总能通过能量的变化找到热量,就像在等熵冲程中可以通过能量的变化找到功一样 [7]。这或许可以解释为何有大量研究试图通过利用量子资源来提高发动机性能,包括相干性[8-15]、测量效应[16]、压缩储层[17-19]、量子相变[20]和量子多体效应[15,21-23]。其他研究则探讨了量子热机与经典热机之间的根本区别[24–26]、有限时间循环[13、27、28]、利用捷径实现绝热[12、22、23、29–33]、非热状态下的操作[34、35]、非马尔可夫效应[36]、磁系统[37–42]、非谐势[43]、光机械实现[44]、量子点实现[38、40、42]、二维材料中的实现[38、41]、与量子系统耦合的经典引擎[45]、量子冷却[46、47]、相对论系统[48、49]、简并效应[ 39、50],以及
自2016年LNG出口禁令自2016年解除以来,美国的抽象液化天然气(LNG)出口急剧上升,而美国现在是世界上最大的出口商。此LNG主要由页岩气产生。生产页岩气以及使油轮运输的液化天然气和液化天然气运输的液化是能源密集型的,这对LNG温室气体足迹产生了重大贡献。页岩气的生产和运输也发出了大量甲烷,液化天然气的液化和油轮运输可以进一步增加甲烷排放。因此,液化天然气的最终用途燃烧中的二氧化碳(CO 2)仅占LNG Greenhouse气体足迹的34%,当时在排放后20年中比较了CO 2和甲烷(GWP 20)(GWP 20)。上游和中游甲烷排放是LNG足迹的最大贡献者(基于GWP 20的总LNG排放量的38%)。添加用于生产LNG的能量的CO 2排放,上游和中游排放量平均占LNG总温室气体足迹的47%。其他重要的排放是液化过程(平均使用GWP 20的总计8.8%)和油轮运输(使用GWP 20平均占总数的5.5%)。油轮的排放量从3.9%到8.1%,具体取决于油轮类型。令人惊讶的是,尽管甲烷在排气口中的甲烷滑倒,但最现代的油轮与蒸汽动力油轮相比,由2冲程和4冲程发动机推动的总温室气体排放量高于蒸汽动力的油轮。总体而言,使用GWP 20分析(160 g CO 2 -eqivArt/mj vs 120 g CO 2 -eqivalent/mj),液化天然气作为燃料源的温室气体足迹比煤炭大33%。甚至在排放后的100年(GWP 100)的时间范围内考虑,这严重低估了甲烷的气候损害,LNG足迹等于或超过煤炭。
经典发动机将热量从热源转移到冷源,方法是使用工作物质 (WS) 将热量依次与每个热源接触。这种热的上游流动在热力学上增加了发动机的熵。在此过程中,自然会限制发动机的最大效率,该效率不能超过由两个热源的温度比决定的理想值。卡诺于 1824 年证明了这一极限,体现了热力学第二定律。量子发动机可以通过重新调整其基本概念来超越这一限制。理论 [1–4] 和实验 [3,5–7] 都表明,可以从量子系统中获取额外的工作能力,称为“能效”。理论上,这些发动机的运行可以分为“冲程”,以模仿自然界的最小作用原理。[3] 冲程的作用以其持续时间和速率为特征