本研究设计并数值研究了一个新的热控制系统,用于用于航天器系统光学有效载荷的检测器。系统使用热电冷却器(TEC)作为维护冷手指在所需的设定点保持探测器温度的活性元件,使其在整个操作过程中保持在所需的范围内。该系统没有使用任何热管网络,而是使用附着在TEC热侧的辐射器将热负载耗散到环境空间环境中。使用有效属性的系统级建模用于对TEC的性能进行建模,而无需对任何内部复杂的几何形状进行建模。与温度相关的电流轮廓用作TEC的输入条件,因此TEC仅消耗所需的外部功率。研究了散热器的TEC设定点和几何参数的效果,并观察到,通过使用较大的设定点或具有较大尺寸的散热器,获得了功耗或提高性能系数的大幅度降低。该系统将进一步研究不同的热载荷和占空比(在100分钟的轨道周期内高达50%),以评估其在不同操作条件下的功效。还研究了该系统的连续操作周期,可以观察到,连续循环之间的循环误差最终将其变为零至零,因此表明在整个系统的整个生命中,都满足了连续的循环的温度控制要求。
固体光学制冷或固体激光冷却是一项突破性技术,通过用合适波长的红外激光照射稀土离子掺杂晶体,可达到低温(低于 120 K -150 K)。在基态和激发离子态之间的间隙波长附近激发这种晶体,可以主要刺激反斯托克斯发射过程,即晶体重新发射比其吸收更多的光,从而冷却下来。基于这一革命性原理的低温冷却器有可能简化或实现许多仪器应用,而传统机械低温冷却器(例如:斯特林/脉冲管、焦耳-汤姆逊、涡轮-布雷顿)的振动和笨重是这些应用的障碍。历史上主要的目标应用是冷却地球观测卫星上的探测器,特别是最敏感的仪器,因为振动会对性能产生不利影响,或者冷却微型卫星或纳米卫星等小型卫星,因为这些卫星的有效载荷有限,相关限制也很强。这篇论文是法国液化空气先进技术公司 (Sassenage) 与法国国家科研中心 (格勒诺布尔) 尼尔研究所之间的合作项目。我的论文的第一个目标是首次在欧洲展示用于太空应用的激光低温冷却器原型的运行。三年内,我们成功设计、开发和运行了能够达到低温的激光冷却器实验室原型,从而使这项技术达到了 TRL 3 成熟度。比萨大学为我们的实验借出的掺杂 7.5% 镱的 YLiF 4 冷却晶体能够在约 30 分钟内冷却至接近 130 K (-153 °C) 的温度,吸收 10 W 激光功率。在我们的系统中,激光通过光纤供给冷却晶体,以便考虑到卫星应用中的一些限制,这在世界范围内尚属首创。我的论文的第二个目标是研究激光低温冷却器对未来地球观测卫星的可行性和适用性。基于小型低地球轨道红外观测卫星的电源架构,我们在整个卫星的尺寸、重量和功率方面比较了激光低温冷却器解决方案与基于脉冲管的解决方案的平衡。我们表明,激光低温冷却器是一个紧凑型系统,除了其他优点之外,还可以节省有效载荷部分的内部体积和质量。由于该技术具有光学和非接触特性,激光低温冷却器体积小、无振动,热损失小。因此,这项工作为未来太空应用开辟了新的光学低温冷却器系列。
基于电源材料的制冷系统被认为是当前基于蒸气压缩设备的潜在替代方案。这些系统提供更接近Carnot限制的晶状体,同时还与微型化,紧凑性和集成到电子设备和可穿戴设备中。已经提出了几种原型,主要依靠机械和流体运动进行传热,这阻止了这些系统达到更高的操作频率,良好的热接触和低损失。一动不动的电源固态设备已经概念化了,但是它们的相对复杂性已阻碍了原型。在这项工作中,我们研究了依靠热电开关来控制热流的固态电局冷却器的性能。我们的设备操作模式通过通过热开关被动吸收热量来最大程度地减少能源消耗。在稳态热传播模型之后,评估了一组广泛的参数,覆盖运行温度,材料特性,几何特征,操作频率和材料极化损失,评估了一组广泛的参数,评估了施加的电流,吸收的热量,功耗和性能。我们估计COP高于1的COP,最大温度(对于不同的材料特性,几何因素或EC损失)和绝热温度的变化比施加的温度跨度高1 k。较高的温度跨度在6至10 K的率COP之间的0.1阶段,导致功耗显着增加。这些结果旨在在选择材料,温度和几何形状方面指导对这些固态设备的研究。
包括Intel热速度提升的效果,该功能可以自动和自动将时钟频率提高到单核和多核Intel Turbo Boost Technology频率以下,该频率是根据处理器低于其最大温度以及Turbo发电预算是否可用的。频率增益和持续时间取决于工作负载,处理器的功能和处理器冷却解决方案。
日本汽车制造商日产开发了一种新型的油漆,可使汽车凉爽。油漆降低了停放在阳光下的汽车内部的温度。油漆比带有常规油漆的汽车保持12ºC凉爽的汽车。新油漆还将减少空调的需求。这意味着汽车电池的压力较小。该油漆是与一家名为Radi-Cool的中国公司合作开发的,Radi-Cool是热冷产品的专家。尼生说:“该项目是我们追求……赋予旅程权力的创新的一部分,并帮助建立一个更清洁,更可持续的社会。”油漆目前仅提供白色。日产希望将来能制作其他颜色。
白天辐射冷却(DRC)已成为一种有前途的方法,用于降低暴露于阳光的表面,而无需能耗。尽管DRC设计方面取得了进步,但由于可见的反射,现有的基于反射的方法通常缺乏透明度,从而阻碍了使用玻璃的广泛应用。效果导致了透明辐射冷却(TRC)的发展,尽管由于占主导地位的太阳能吸收,白天的有效冷却仍然具有挑战性。本文提出了一种新型的TRC设计,其中包括透明的双向电流结构上的聚二甲基硅氧烷(PDMS)发射极。使用优化的Bragg Repetor(OBR)和90μM孔孔式AG窗口屏幕屏幕回路(WR)分别用于反射近红外(NIR)光谱(0.74 <𝝀 <<1.4μm)和整体词素光谱的频带A和整体溶液谱。在白天,与PDMS涂层的玻璃相比,拟议的TRC通过透明的双回路系统将温度降低22.1°C。因此,这种方法使用双回路优化了太阳能反射和可见性之间的平衡,为需要冷却和透明度的应用提供了最佳解决方案。
抽象的致病细菌是在消费受污染的家禽产品期间许多人类食物中毒的原因。进行了这项研究是为了研究在Kohgiluyeh和伊朗的Kohgiluyeh和Boyer-Ahmad省的屠宰场的不同温度下屠宰的家禽尸体的微生物负荷差异。在温度为24、10和4°C的冷却器的无菌条件下,随机采集了一百二十个样品。根据伊朗国家标准进行微生物和细菌分离的总数。结果表明,在微生物的数量方面,3.3%的样品高于允许的极限,并且所有阳性样品均属于温度为24°C的冷却器。此外,28.3%的样品对大肠杆菌的污染呈阳性,最高的污染物属于第一个冷却器(24°C)。此外,据报道,16.2%的样品对沙门氏菌属于阳性。这项研究表明,冷却步骤显着(P <0.05)减少了微生物,大肠杆菌和沙门氏菌属的数量。大肠杆菌和沙门氏菌都可以从研究的各个阶段中分离出来。由于与某些细菌(例如大肠杆菌和沙门氏菌属)的交叉污染,尸体的微生物负荷在冷却后减少了,但仍有必要遵守健康标准来修改屠宰过程并使用其他类型的冷冻机,而这些冷却器不太较少诸如空气冷水机而不是水冷却器的冷冻机。此外,作为沙门氏菌属。来源主要来自肠道,如果在屠宰过程中特别注意内部器官的排放和沙门氏菌属的减少。繁殖期在肉鸡农场的污染。
请确保该文件在投标日前一天(闭馆日除外)下午3点前以挂号信等可追踪的方式(简易挂号信即可)送达,并电话通知投标负责人,确保该文件通过邮寄方式发送。 (2)如需重新投标,投标必须在重新投标日前一天下午5点之前到达(闭馆日除外)。 (3)如果提前提交投标,则将作为邮寄投标处理。 (4)提交地址应符合第7条(5)项的规定,并务必通过电话确认申请已到达。
在追求碳中立性时,香港特殊行政区政府的电气和机械服务部(EMSD)首次实施了多贸易集成的机械,电气和管道(MIMEP),这是Tai Lung Veterinary veterinary vetreary Laboratory的Chiller's Chiller植物更换。为进一步优化了冷却器厂的效率并降低能源消耗,提出了通过部分可观察到的加固学习(RL)算法优化的冷却器优化,其中已经开发出三种机器学习模型来预测冷却需求,预测冷却负载并预测能源消耗。通过利用零膨胀的回归技术,这些模型为RL算法建立了环境配置。与默认设置相比,优化方法可以根据仿真提高整体冷却器工厂效率约20%。这些发现突出了将MIMEP与人工智能结合使用以实现可持续能源管理的潜力,强调了技术一体化在实现碳减少目标中的重要性。