摘要在制造组件中使用电弧添加剂制造,需要特定的冷却时间来防止结构和几何畸变过热。目前,这些冷却时间是根据某些层间温度下的经验插入的,从而降低了可重复性,导致不需要的组件特性并增加了过程时间。在此贡献中,使用无效元素方法来计算添加性制造组件的温度演化。这允许优化过程参数,这些过程参数(在我们在此处的考虑中)是焊接速度和每一层的冷却时间,以减少总过程时间,同时实现了足够的组件属性。优化是使用无梯度的Nelder-Mead-Mead-Mead算法进行的,其中通过惩罚函数考虑了过程参数的某些约束。为了获得合理的仿真结果,预先使用实验数据对实验设置的温度依赖性传热进行了建模和校准。很明显,与无梯度优化过程结合使用的热元素模拟是对线弧添加剂制造进行优化的过程参数的合适数值工具。优化的过程参数满足了有关制造成分冷却的某些要求。此外,与手动选择的参数相比,优化参数可以显着减少过程时间。在我们的示例中,这约为48%。
摘要:本研究提出了一种混合方法,以生成用于未来的机器学习应用程序的样本数据,用于使用GMAW工艺预测定向能量沉积 - ARC(DED-ARC)中的机械性能。DED-ARC是一个增材制造过程,由于其高沉积速率高达8 kg/h,它提供了一种具有成本效益的生成3D金属零件的方式。由填充材料G4SI1(ER70 S-6)制成的添加性生产的壁结构以T 8/5冷却时间的依赖性显示。数值模拟用于将过程参数和几何特征与特定T 8/5冷却时间联系起来。具有平均焊接功率,焊接速度和几何特征(例如壁厚,层高度和热源尺寸)的输入,可以在模拟焊接过程中计算每种迭代的特定温度场。这种新颖的方法允许通过结合实验结果来生成基于实验测量的T 8/5冷却时间来生成回归方程,从而生成大型的人工数据集作为机器学习方法的训练数据。因此,使用回归方程与数值计算的t 8/5冷却时间结合使用,在这项研究中可以准确预测机械性能,仅误差仅为2.6%。因此,一小部分实验生成的数据集允许实现回归方程,从而可以精确地预测机械性能。此外,经过验证的数值焊接模拟模型适合于实现T 8/5冷却时间的准确计算,误差仅为0.3%。
摘要:线弧添加剂制造(WAAM)以其高沉积速率而闻名,从而使大部分生产。然而,该过程在制造铝制零件时面临诸如孔隙率形成,残留应力和破裂的挑战。本研究的重点是通过使用Fronius冷金属转移系统(Wels,Austria)使用WAAM工艺制造的AA5356墙的孔隙率。将墙壁加工成以获取用于拉伸测试的标本。该研究使用计算机断层扫描和拉伸试验来分析标本的孔隙率及其与拉伸强度的潜在关系。分析的过程参数是行进速度,冷却时间和路径策略。总而言之,由于对焊接区域的热量输入较低,增加行进速度和冷却时间显着影响孔径。孔隙率可以减少热量积聚。结果表明,旅行速度的增加会导致孔隙率略有下降。特别是,当将旅行速度从700毫米/分钟提高时,总孔体积从0.42降低到0.36 mm 3。最终的拉伸强度和“来回”策略的最大伸长率略高于“ GO”策略的策略。在拉伸测试后,最终的拉伸强度和屈服强度与计算机断层扫描测量的孔隙率没有任何关系。对于所有扫描标本,测得的体积上孔总体积的百分比低于0.12%。
液晶弹性体 (LCE) 是一类由松散交联的聚合物网络组成的形状记忆聚合物,在从向列相到各向同性相的转变过程中表现出可逆的形状变化。[1] 由于它们具有类似肌肉的工作密度和收缩应变 [10–14],并且能够打印或图案化为各种几何形状,它们已越来越广泛地用作软体机器人、[2–4] 可穿戴计算和触觉 [5,6] 和形状变形物质 [7–9] 中的执行器。[15,16] 在大多数机器人和工程应用中,基于 LCE 的执行器使用外部热源进行热刺激,或通过焦耳加热使用集成线或嵌入式渗透粒子网络进行电刺激。先前的研究主要集中在通过焦耳加热来加热 LCE,[6,12,13,17,18] 其中许多应用使用液态金属[19–21] 和波浪电子[12,13,22,23] 作为加热元件。然而,这些方法的一个关键限制是它们依赖于开环加热和被动冷却。这导致温度变化缓慢,并且对控制 LCE 执行器响应速度和曲线的能力有限。具体而言,由于 LCE 的热导率低至 0.3 W m − 1 K − 1[20],导致驱动速度可能很慢;由于热传递是通过对流而不是传导进行的,冷却速度受到极大限制。后者导致冷却时间可能需要激活时间的 5 倍[12,24] 10 倍[13] 甚至 50 倍[25] 才能使 LCE 在环境条件下冷却并恢复到其原始状态。此外,由于温度升高幅度更大,更快的驱动速度需要更长的冷却时间。[25] 为了减少加热时间,人们嵌入了液态金属液滴等软填料来提高这些结构的热导率。[6] 冷却时间的问题仍然存在,加热和冷却时间的差异取决于传导(加热)和对流(冷却)之间传热速率的差异;需要更智能的方法来解决这个问题。最近有人努力通过新的刺激方法来提高 LCE 执行器的速度和控制,[26] 尽管其中大多数方法都会引入显着的机械
我们用TNG-Cluster(一种新的宇宙磁性水力动力学仿真)分析了气态内培养基(ICM)的物理特性。我们的样本包含352个模拟簇,跨越晕质量范围为10 14我们专注于将簇分类为冷核(CC)和非冷核(NCC)种群的分类,z = 0群集中央ICM属性的分布以及CC群集群体的红移演化。我们分析了熵,温度,电子数密度和压力的分析结构和径向纤维。为了区分CC和NCC簇,我们考虑了几个标准:中央冷却时间,中央熵,中央密度,X射线浓度参数和密度较高的斜率。根据TNG群集,没有先验群集的选择,这些属性的分布是单峰的,因此CCS和NCCS代表了两个极端。在z = 0的整个TNG群集样品中,基于中央冷却时间,强的CC分数为F SCC = 24%,而F wcc = 60%,弱和NCCS分别为16%。然而,尽管趋势的幅度级甚至方向随定义而变化,但CC的比例在很大程度上取决于光环质量和红移。TNG群集中模拟的高质量簇的丰富统计数据使我们能够匹配观测样本并与数据进行比较。tng群集可以用作实验室,以研究因合并,AGN反馈和其他物理过程而引起的群集核心的演变和转换。Z = 0到Z = 2的CC分数与观测值以及热力学量的径向纤维夹在全球范围内以及分配为CC与NCC Halos时。
了解电子 - 波相互作用在根本上很重要,并且对设备应用具有至关重要的影响。但是,在魔法角度附近的扭曲的双层石墨烯中,目前缺乏这种理解。在这里,我们使用时间和频率分辨的光电压测量方法研究电子音波耦合,作为声子介导的热电子冷却的直接和互补探针。我们发现在魔术角靠近扭曲的双层石墨烯的冷却时,我们发现了一个显着的加速:冷却时间是从室温下降到5 kelvin的几次picseconds,而在原始的双层石墨烯中,在较低温度下,冷却到声子变为较慢。我们的实验和理论分析表明,这种超快冷却是超晶格形成的组合作用,具有低功能的Moiré声子,空间压缩的电子Wannier轨道以及降低的超晶格Brillouin区域。这可以实现有效的电子 - phonon umklapp散射,从而克服了电子 - phonon动量不匹配。这些结果将扭转角建立为控制能量放松和电子热流的有效方法。
本研究详细介绍了东区改造后新布局的放射学评估所面临的挑战,从准备和拆除旧装置开始。然后,重点关注屏蔽结构的设计以及执行的放射学评估的驱动因素,展示了为实现与 CERN 放射区域分类兼容的即时环境剂量当量率水平而做出的苛刻约束和由此产生的妥协。改造后的东区的设计也针对残余辐射水平进行了优化。特别是,光束线元件的数量和目标区域的大小已最小化。已创建混合区,该混合区由粗光束转储与目标区物理隔离,包含次级线的大多数光束线元件,从而减少了在对光束线元件进行干预期间接收的剂量。此外,主要区域的通风系统设计为提供动态约束,设计目标是每小时设施的气密性为 1 个空气量,即使在短暂的冷却时间后,也能限制因进入而吸入的有效剂量。最后,该研究详细介绍了调试阶段的结果、运行第一年进行的测量以及持续的光束优化,以最大限度地减少瞬时辐射和残留辐射,同时满足用户的光束规格。
摘要:考虑到高水平的热量和曝光型枪手遇到他们的工作活动时,个人保护设备(PPE)对于提高安全性至关重要。相变材料(PCM)被称为能够吸收大量热能的高级材料,并有可能增加保护服装的热性能。在这项工作中,第一次开发了PCM-Vest,并评估了其热性能。采用了三阶段的方法:(1)在实验室的小规模上,评估了不同封装的PCM对多层组装性能的影响; (2)在实验室中,评估了热量和洪水测试的基本要求; (3)在模拟的城市火灾中,研究了三种不同的PCM率(不同的纺织品和设计)的热性能。作为主要结论,PCMS显着影响了多层组件的加热速率,尤其是当使用具有较高潜热的PCM时。在某些情况下,与没有PCM的样品相比,传热指数(HTI)加倍。作为缺点,正如预期的那样,冷却时间增加了。PCM-VEST样品确保了热量和电流测试的要求。通过这项研究,可以突出显示使用PCM来增强常规PPE的热保护的积极影响。
警告和一般说明 警告:臭氧可能对人体有害。采取合理措施避免接触。目前,臭氧的最大 8 小时接触限值为 0.1 PPMV。 警告:切勿在未采取适当的眼睛保护措施的情况下直视本分析仪内的紫外线灯。紫外线辐射会导致永久性眼睛损伤。 警告:本分析仪内的组件由交流电压供电。采取一切必要的预防措施,消除触电风险。 警告:某些组件触摸时可能会很烫。使用这些组件之前,请留出适当的冷却时间。AFX®、IN USA™ 和 Excellence in Instrumentation™ 是 IN USA, INCORPORATED 的商标。本文件受版权保护。IN USA, INC. 保留对本手册中涉及的产品进行更改以提高性能、可靠性或可制造性的权利。确保将本手册与其随附的原始产品一起使用。尽管已尽一切努力确保本手册中包含的信息的准确性,但 IN USA™ 对无意的错误不承担任何责任。IN USA™ 对此处描述的任何测量方案的使用不承担任何责任。IN USA TM 不打算或建议将本产品用于 (a) 任何类型的医学治疗或物理治疗,无论是作为此类治疗的直接或辅助部分,包括但不限于生命支持(即重症医疗)应用或 (b) 任何核设施
警告和一般说明警告:臭氧可能对人体有害。采取合理措施避免接触。目前,臭氧的最大 8 小时接触限值为 0.1 PPMV。警告:切勿在未采取适当的眼睛保护措施的情况下直视本分析仪内的紫外线灯。紫外线辐射会导致永久性眼睛损伤。警告:本分析仪内的组件由交流电压供电。采取一切必要的预防措施,消除触电风险。警告:某些组件触摸时可能会很烫。使用这些组件之前,请留出适当的冷却时间。AFX®、IN USA™ 和 Excellence in Instrumentation™ 是 IN USA, INCORPORATED 的商标。本文件受版权保护。IN USA, INC. 保留对本手册中涉及的产品进行更改以提高性能、可靠性或可制造性的权利。确保将本手册与其随附的原始产品一起使用。尽管已尽一切努力确保本手册中包含的信息的准确性,但 IN USA™ 对无意的错误不承担任何责任。IN USA™ 对此处描述的任何测量方案的使用不承担任何责任。IN USA TM 不打算或建议将本产品用于 (a) 任何类型的医学治疗或物理治疗,无论是作为此类治疗的直接或辅助部分,包括但不限于生命支持(即关键医疗)应用或 (b) 任何核设施应用。IN USA™ 不会故意销售本产品用于此类应用。将 IN USA™ 产品用于医疗或类似治疗无法合理地预期会产生准确的治疗监测,并且可能会导致生命支持设备故障或严重影响其安全性或有效性。任何直接购买者或售后市场购买者在此类应用中使用产品(无论 IN USA™ 是否知晓)均应免除 IN USA™ 对此类购买者或任何有意或无意地受到此类使用影响的人员的任何责任或义务。