2022年建筑能源效率标准包括可变制冷剂流量(VRF)空调和热泵的最低效率要求,表110.2-G和表110.2-H。综合能源效率比(IEER)和能效比(EER)效率指标基于AHRI 1230测试程序。在2023年,AHRI 1230测试程序进行了更新,从而改变了IEER和EER效率评级。此外,美国能源部(DOE)根据更新的AHRI 1230测试程序采用了新的最低IEER效率要求。这些DOE最低IEER效率要求于2024年1月1日生效。更新的AHRI 1230测试程序和DOE的最低IEER效率要求不再与VRF设备确定的最低效率要求相一致,其冷却能力大于或等于表110.2-G和表110.2-G和表110.2-H的2022年2022年建筑能源效率标准的65,000 BTU/h。
摘要:我们研究了以量子测量和反馈为动力的基于耦合的热机。我们考虑了机器的两个不同版本:(1)量子麦克斯韦的恶魔,其中耦合 - 标准系统连接到可拆卸的单个共享浴室,以及(2)测量辅助冰箱,其中耦合 - Qubit-Qubit-Qubit-Qubit-Qubit-Qubit-qubit-Qubit with与热水浴室接触。在量子麦克斯韦的恶魔案例中,我们讨论了离散和连续测量。我们发现,可以通过将其耦合到第二个量子位来提高基于单个基于Qubit的设备的功率输出。我们进一步发现,与仅执行单倍测量的两个平行操作的两个设置相比,这两个量子位的同时测量都可以产生更高的净热量提取。在冰箱情况下,我们使用了连续的测量和统一操作来为基于耦合的冰箱供电。我们发现,可以通过进行合适的测量来增强使用交换操作运行的冰箱的冷却能力。
Liebert ® HPM 直接膨胀冷却装置采用最先进的行业技术,可确保数据中心和服务器机房的精确冷却。它配备 R410A 制冷剂,可使装置达到显着的效率水平。Liebert ® HPM 将艾默生网络能源广泛的冷却专业知识融入一系列独特的机柜空气冷却器中,旨在确保性能和可靠性。Liebert ® HPM 系列标配 EC 风扇,从而确保最高的能源效率。整个装置设计还通过增强的热交换器进行了优化,提供了高水平的整体效率和冷却能力。此外,Liebert ® HPM 还包括独特的数码涡旋技术,使其成为理想的可扩展冷却系统,能够随着不断变化的业务需求而扩展。数码涡旋调节能力极大地提高了 Liebert ® HPM 的效率水平,50 kW 装置(包括数码涡旋)的功耗仅为 10 kW 装置,从而实现了有利的节能效果。
Liebert ® HPM 直接膨胀冷却装置采用最先进的行业技术,可确保数据中心和服务器机房的精确冷却。它配备 R410A 制冷剂,可使装置达到显着的效率水平。Liebert ® HPM 将艾默生网络能源广泛的冷却专业知识融入一系列独特的机柜空气冷却器中,旨在确保性能和可靠性。Liebert ® HPM 系列标配 EC 风扇,从而确保最高的能源效率。整个装置设计还通过增强的热交换器进行了优化,提供了高水平的整体效率和冷却能力。此外,Liebert ® HPM 还包括独特的数码涡旋技术,使其成为理想的可扩展冷却系统,能够随着不断变化的业务需求而扩展。数码涡旋调节能力极大地提高了 Liebert ® HPM 的效率水平,50 kW 装置(包括数码涡旋)的功耗仅为 10 kW 装置,从而实现了有利的节能效果。
Liebert ® HPM 直接膨胀冷却装置采用最先进的行业技术,可确保数据中心和服务器机房的精确冷却。它配备 R410A 制冷剂,可使装置达到显着的效率水平。Liebert ® HPM 将艾默生网络能源广泛的冷却专业知识融入一系列独特的机柜空气冷却器中,旨在确保性能和可靠性。Liebert ® HPM 系列标配 EC 风扇,从而确保最高的能源效率。整个装置设计还通过增强的热交换器进行了优化,提供了高水平的整体效率和冷却能力。此外,Liebert ® HPM 还包括独特的数码涡旋技术,使其成为理想的可扩展冷却系统,能够随着不断变化的业务需求而扩展。数码涡旋调节能力极大地提高了 Liebert ® HPM 的效率水平,50 kW 装置(包括数码涡旋)的功耗仅为 10 kW 装置,从而实现了有利的节能效果。
我们在固态中提出了循环制冷,在II型超导体中采用了磁场涡流气体(也称为频线)作为冷却剂。通过设想由绝热和等温臂组成的赛马几何形状来实现的制冷周期,并刻在II型超导体中。通过在样品中施加外部电流(在Corbino几何形状中),可以实现赛马场中的隆克子的引导传播。磁场的梯度设置在赛道上,使一个人可以绝热冷却并加热伏克子,随后将热量与冷热储层交换。我们表征了S -Wave和D波配对对称性的热力学上的制冷周期的稳态状态,并呈现其功绩的形式,例如传递的冷却能力,以及性能的系数。我们的冷却原理可以通过在常规稀释冰箱中可实现的基础温度下方进行局部冷却来提供明显的冷却,以实现芯片微冰期目的。我们估算单位区域的冷却功率的NW / mm 2,假设隧道与〜m µm 2 < / div>
热电冷却 (TEC) 因其组件尺寸小、成本低和环保而在许多应用中得到实施。这种组件在施加直流电流时会产生温度梯度,已在许多评论中进行了讨论。本文讨论了许多与 TEC 相关的问题。首先,介绍了影响该组件的因素,例如性能系数、用途、影响因素和冷却能力。其次,介绍了性能系数,这是显示 TEC 设备如何有效工作的最重要的参数。TEC 设备可靠且不需要机械运动部件。它们体积小巧且环保。第三,描述了 TEC 结构及其众多热力学方程。还简要讨论了 TEC 设备的特性及其应用。最后,研究了 TEC 设备作为发电设备或热电发电机 (TEG) 的用途,尽管 TEC 和 TEG 完全矛盾。施加温度时,TEG 会产生电流。这项研究的结论是,TEC 是一种良好且可靠的设备,可以应用于许多应用。此外,TEC在电子领域具有很好的应用潜力,因为它可以通过输入电压和电流轻松控制。
现实世界被动辐射冷却需要高度发射,选择性和全向热发射器,以将辐射冷却器保持在一定温度以下的一定温度下,同时最大程度地提高净冷却能力。尽管已经证明了各种选择性的热发射器,但由于控制多维中光子结构的热发射的极端困难,达到这些条件仍然具有挑战性。在这里,我们证明了与机器学习逆设计的混合极性介电交层热发射器,在8-13μm的大气透明度窗口中,高发射率约为0.92,大光谱选择性〜1.8,较大的发射范围为80度,高达80度。这种选择性和全向热发射极导致在〜800 w/m 2的强太阳照射下,温度降低至〜15.4°C的新记录,这显着超过了最新的结果。设计的结构在应对城市热岛效应方面还具有巨大的潜力,建模结果表明节能和部署区域减少。这项研究将对被动辐射冷却,热能光子学和应对全球气候变化产生重大影响。
摘要:提出一种新型交叉肋条微通道(MC-CR)热沉,使流体自旋转。针对100 w/cm 2 的热测试芯片(TTC),将交叉肋条微通道与矩形(MC-R)和水平肋条微通道(MC-HR)热沉进行了比较。结果表明:采用交叉肋条微通道后,热测试芯片的结温为336.49 K,压降为22 kPa。与矩形和水平肋条热沉相比,交叉肋条微通道的冷却能力分别提高了28.6%和14.3%,但压降增加了10.7倍和5.5倍。然后,研究了不同流速下微通道长宽比(λ)的影响,发现长宽比与冷却性能呈非线性关系。为降低压降,对横肋的倾角(α)和间距(S)进行了优化,当α=30°、S=0.1mm、λ=4时,压降由22kPa降至4.5kPa。另外,在相同压降条件下,分析了矩形、交错翅片(MC-SF)、交错肋片(MC-SR)及横肋微通道的散热性能,MC-CR仍具有优越的散热性能。
高性能芯片的热管理复杂性增加,因为热负荷随空间和时间变化,而液体冷却系统通常是为最严格的静态条件设计的。一些研究开发了传热增强技术来提高液冷散热器的冷却能力,但由于在通道内增加了元件,泵送功率永久增加。本文提出了一种液体冷却自适应散热器,它可以有效地调整其热提取能力的分布以适应时间相关和非均匀的热负荷场景。本文介绍了具有双晶金属/SMA 翅片的中尺度冷却装置的数值设计、SMA 翅片的制造和训练程序的定义以达到所需的行为以及实验评估。通过数值和实验证明了自适应翅片局部增强传热的能力。结果表明,与普通通道相比,自适应翅片可以将温度均匀性提高 63%。使用双晶金属/SMA 翅片样品可降低热阻,尽管热通量增加,但表面最大温度梯度几乎保持不变。在部分负载间隔对总体运行周期有重大影响的应用中,可最大程度地节省能源。