随着人们对铅 (Pb) 毒性的环保意识日益增强,再加上严格的法规,铅基焊料的使用为无铅焊料合金的发展提供了必然的驱动力。已经进行了许多研究来评估焊料合金和表面处理对焊点可靠性的影响。然而,随着电子设备需求的增加,需要提高焊点的机械性能,以跟上当前电子设备技术的发展。在本研究中,总结了表面处理和冷却速度对使用镍基表面处理的焊点可靠性的影响。该研究重点研究了镍基表面处理 (ENIG 和 ENEPIG),采用不同的冷却介质,慢速(炉)、中速(空气)和快速(水)。研究发现,表面处理的类型和冷却速度可以改变焊料金属间化合物 (IMC) 的形态,并直接改变焊点的机械性能。据报道,更快的冷却速度可以提供更细的 IMC 晶粒,这可能会转化为更好的焊点强度。本文提出的结果可能有助于进一步研究并促进焊点可靠性的改进。关键词:焊料合金、表面光洁度、界面反应、焊点和冷却速率。
临床场景:在过去的几年中,有多项研究探讨了治疗劳力性中暑 (EHS) 的替代冷却策略。EHS 的发病率和死亡率与患者核心体温保持在临界阈值 40.5°C 以上的时间有关。尽管冷水浸泡 (CWI) 是治疗 EHS 患者的黄金标准,但人们已经研究了更新的替代冷却技术,以用于可能无法进行 CWI 的环境(即偏远地区)。临床问题:与之前确定的 CWI 冷却率相比,替代冷却方法是否具有有效的核心体温冷却率来治疗高热症?主要发现摘要:作者搜索了使用替代冷却方法为高热症患者降温的研究。要纳入,研究需要 PEDro 评分 ≥ 6 且证据水平 ≥ 2。他们发现了 9 项与我们关注的临床问题相关的研究;其中,5 项研究符合纳入标准。手部冷却、冷水淋浴和冰片冷却的冷却速度分别为 0.03°C/min、0.08°C/min 和 0.06°C/min,而防水布辅助振荡冷却 (TACO) 法是唯一具有可接受冷却速度的方法(范围为 0.14 – 0.17°C/min)。临床底线:治疗 EHS 时,如果无法使用 CWI,防水布辅助冷却法可能是一种合理的替代方案。如果有更好的冷却方法,临床医生不应使用冷水淋浴、手部冷却或冰片冷却。临床医生应始终在可用时使用 CWI。推荐强度:五项 PEDro 评分 ≥ 6 的 2 级研究表明,TACO 法是唯一一种以与 CWI 相似但较慢的速度降低核心体温的替代冷却方法。手部冷却、冷水淋浴和冰层冷却都不能以适当的速度降低核心体温,如果有更好的冷却速度的方法,则不应在 EHS 情况下使用这些方法。
图 4:a) 显微照片显示层和感兴趣的区域。黄色虚线表示熔池边界。黄色框表示拍摄高倍显微照片的区域,b)-e) 高倍显微照片,b) 层 11 CS,c) 层
摘要。工业上,为了获得不同的钢微观结构,人们长期使用运行台 (ROT)。钢的微观结构受冷却速度控制,而冷却速度又取决于各种因素,如板材速度、喷嘴组距离、冷却剂流速等。因此,要获得新的钢种,需要对所有这些参数进行适当的组合设置。从实验室规模的 ROT 观察到的数据(如上喷嘴距离、下喷嘴距离和冷却剂质量流速)可用于找出冷却速度,这是实现钢所需性能的重要参数。这里使用人工神经网络在观察到的数据和热力学参数之间建立经验关系,这将决定冷却速度并对其进行验证。
变体选择是钛合金中一种常见而复杂的现象,不仅受影响变体形核过程的微观组织特征(如晶粒取向、晶界、残余α相等)的支配,而且受冷却速率、残余应力等动力学因素的显著影响,尤其对于增材制造的钛合金。为研究冷却速率对激光立体成形(LSF) Ti-6Al-4V合金变体选择的影响,系统研究了激光立体成形样品(具有不同的冷却速率)不同区域但属于同一个β晶粒的α变体的选择。利用电子背散射衍射(EBSD)数据显示,虽然12种α变体均出现在不同的冷却速率下,但一些变体的面积百分比明显偏离不同冷却速率下相应的理论值。为定量表征变体选择的变化,进一步对按角度/轴类型区分的α / α边界长度分数进行统计分析。结果表明,由于残余应力较大,当冷却速度较高时(底部区域),IV 型 α / α 边界的长度分数(63.26 ◦ /[ − 10 5 5 – 3])大于其他类型的 α / α 边界的长度分数;而当冷却速度较低时(中间区域),II 型 α / α 边界(60 ◦ /[11 – 20])占主导地位,这可归因于 β → α 相变过程中的自调节机制。了解冷却速度对 α 变体选择的影响有助于理解 LSFed Ti 合金中的微观组织演变。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
摘要 。WAAM工艺中的热行为是产生热应力的一个重要原因。本文利用ABAQUS软件建立了四层壁面的三维模型,以研究碳钢(ASTM A36)WAAM壁面的热行为。此外,研究了基材预热温度和行进速度对温度分布的影响。建模结果表明,随着沉积层数的增加,峰值温度升高,但平均冷却速度降低。此外,基材预热会增加第一层的峰值温度并降低其平均冷却速度。从模拟结果来看,行进速度对沉积层的热行为有主要影响。 关键词 。增材制造;电弧增材制造;有限元方法;低碳钢。
Zoppas Industries Heating Element Technologies(以下简称 ZIHET)是一家全球供应商,为太空卫星、航天器、加压模块和地面天线提供加热器和系统,自 1992 年起获得 ESA/ESCC 认证。柔性加热元件由层压在两个绝缘层之间的蚀刻箔电阻元件组成。ZIHET 生产的柔性加热箔的最小厚度仅为 0.15 毫米,可产生 200°C 的热量,从而通过加热器的薄型设计和直接粘合到应用上实现出色的传热效果。加热器可应用于最复杂的形状、几何形状、曲线和管道,而不会牺牲效率或可靠性。柔性加热器提供快速的加热和冷却速度,确保在不同功率密度下均匀分布热量。