烧结发生的温度大约高于化合物熔点的一半。由于陶瓷的熔点在所有工程材料中最高,因此烧结温度通常在 1000 至 2000 °C 之间。为了控制最终的微观结构和性能,关键的烧结参数包括加热速度、最高温度、保持时间和气氛。其他可能性包括使用机械压力、电场/电流或电磁波、烧结添加剂等。在工业间歇或连续炉中,缓慢的加热速度、较长的保持时间,以及随后的缓慢冷却速度是标准配置。由于当前的能源危机和全球气候变化,金属和陶瓷零件的烧结等能源密集型工艺不仅增加了生产成本,而且还对其碳足迹和生命周期评估产生负面影响。
某些卫星子系统需要在有限的温度范围内(-90ºC 至 +150ºC)进行热循环。在这种情况下,硅油循环 TCU 是一个非常好的选择,因为它们提供出色的温度均匀性和加热/冷却速度,同时将投资和运营成本保持在适中的水平。Telstar 已成功采用了这项技术,在制药行业的冷冻干燥厂中使用这种应用已有 50 多年,市场上共有数千套这种硅油循环系统。这些流体循环系统可以通过机械制冷(低温极限低至 -70ºC)或专门设计的 LN2 热交换器进行冷却,低温极限低至 -90ºC。
ZOPPAS Industries供暖元素技术是用于太空卫星,航天器,加压模块和地面天线的全球加热器和系统供应商,ESA/ESCC合格自1992年以来。柔性加热元件由两个绝缘层之间层压的蚀刻箔电阻元件组成。由Zoppas Industries加热元件产生的柔性加热箔技术从最低厚度仅为0.15 mm开始,它们允许从加热器的薄设计和直接粘合到应用程序中获得出色的传热结果。这些加热器具有薄的设计和结构,由柔性材料制成,以适合几乎任何类型的设备。加热器可以应用于最复杂的形状,几何形状,曲线和管道,而无需牺牲效率或可靠性。柔性加热器提供快速加热和冷却速度,以确保各种瓦特密度的均匀热量分布。
在打印和热处理条件下研究了通过激光粉末床熔合 (L-PBF) 制造的 Inconel 625 的微观结构。L-PBF 工艺固有的极高冷却速度通常会产生精细的微观结构和复杂的残余应力场,这需要退火以减少应力并调整微观结构以获得所需的机械性能。Inconel 625 合金是一种镍基高温合金,仍然是 L-PBF 工艺中常用的材料。L-PBF 工艺产生的独特微观结构和不同热处理工艺引入的不同相需要研究,以促进材料的广泛应用。本文研究了在 700°C、900°C 和 1050°C 下进行一小时热处理对 L-PBF 部件的微观结构和显微硬度的影响。这些部件在密苏里大学研究反应堆中心 (MURR) 使用“快”中子进行辐照。还比较了辐射前后的显微硬度。
传统散热器只是金属片的形状,依靠放置位置和周围空气从放大器中吸收热量。ICTunnel™ 更为复杂,其作用类似于调节体温的人类下丘脑。ICTunnel™ 采用铝粘合翅片散热器,这种散热器用于高功率医疗、激光和测试设备。它利用低热质量的原理,因此加热速度快,但冷却速度也快。在其相对较小的尺寸内有翅片,提供近 31 平方英尺的表面积。其操作的关键在于翅片的间距——尽可能靠近彼此以最大化隧道内的表面积,但不要太近以免彼此加热。ICTunnel™ 使用无噪音风扇以及压力和温度传感器来维持放大器的目标温度。
用高科技合金制造结构件的成本很高,因此,缺陷或磨损的修复对工业生产来说是一项重要的资产[1]。在众多新技术中,激光熔覆(又称直接能量沉积)正处于新兴领先地位。与其他修复工艺相比,熔覆中的能量输入是空间局部的,受热影响区较小[2–4]。在激光熔覆修复的部件中,基材和熔覆区之间会形成一个具有微观结构梯度的界面。它决定了修复部件的内聚力和寿命[5, 6]。工艺参数和部件的具体几何形状共同控制着热输入、熔池形状、空间温度梯度和冷却速度,而这些因素决定着材料的微观结构。材料体积可以经过多次凝固-再熔化循环,打印上述各层,具体取决于熔池深度和形状,熔池深度和形状可能非常复杂,正如 Biegler 等人在 [7] 中通过实验展示的那样。材料随后也会经历退火,因为部件一直处于高温下,直到工艺结束 [8, 9]。
摘要:增材制造 (AM) 因其能够制造传统方法难以生产的复杂零件而已在工业应用中取得进展。然而,AM 生产的零件通常缺乏传统机加工零件的尺寸和几何精度以及表面质量,这限制了 AM 的广泛应用。AM 中的激光粉末床熔合技术在开发先进金属材料方面引起了广泛关注,因为与其他方法相比,它们具有更快的冷却速度和更好的表面质量。一种新颖的混合增材制造 (HAM) 方法已被引入,将 AM 的优势与铣削的精度相结合。通常,混合制造涉及多台 CNC 机器:一台用于增材制造,另一台用于减材制造。但是,使用一台 CNC 机器进行混合制造可以提高精度、缩短生产时间并降低成本。本综述研究了最新进展,并确定了理解和优化这种混合制造工艺的挑战。
电子束-粉末床熔合 (EB-PBF) 技术中通常沿构建方向形成柱状晶结构,导致物理和机械性能各向异性。本研究模拟了铸件凝固条件,并在 EB-PBF 中促进了原位再结晶,以促进 718 合金中柱状晶到等轴晶结构转变。这是通过独特的线性熔化策略以及 EB-PBF 中特定的工艺参数选择来实现的。研究发现,使用线序号 (LON) 函数的定点熔化会影响冷却速度和温度梯度,从而控制晶粒形貌和织构。高 LON 会产生大的等轴晶粒区和随机织构,而固定的 LON 和高面能量密度会产生强织构。研究了转变过程中形成裂纹和收缩缺陷的主要驱动力。固定面能量密度下的高 LON 减少了平均总收缩缺陷和裂纹长度。硬度在转变过程中降低,这与 γ ′′ 沉淀物尺寸的减小有关。
Zoppas Industries Heating Elements Technologies 是一家全球供应商,为太空卫星、航天器、加压模块和地面天线提供加热器和系统,自 1992 年起获得 ESA/ESCC 认证。柔性加热元件由层压在两个绝缘层之间的蚀刻箔电阻元件组成。Zoppas Industries Heating Elements Technologies 生产的柔性加热箔的最小厚度仅为 0.15 毫米,可产生 200°C 的热量,从而通过加热器的薄型设计和直接粘合到应用上实现出色的传热效果。这些加热器采用薄型设计和结构,由柔性材料制成,可定制成适合几乎任何类型的设备的形状。加热器可应用于最复杂的形状、几何形状、曲线和管道,而不会牺牲效率或可靠性。柔性加热器提供快速的加热和冷却速度,确保在不同功率密度下均匀分布热量。
摘要:本研究对先进生物材料合金快速凝固Co-Cr-Mo-C合金的微观组织和腐蚀性能进行了研究。采用快速凝固铸造方法不仅使受快速凝固影响较大的ε -HCP相的形成量发生了显著变化,而且电化学行为和凝固组织也发生了显著变化。本研究利用OM、SEM、EDS、XRD和动态电位仪研究了快速凝固Co-Cr-Mo-C合金。将钴合金锭放入充满氩气的感应炉中熔化,然后浇铸到V型砂型铜模中,制备快速凝固样品,并在不同的冷却速度下测量其性能。微观组织检查表明合金的结构主要由柱状树枝状组织组成,碳化物分布在一次和二次树枝状臂内,快速凝固将获得更细的树枝状组织以及改进的碳化物分布。这种结构将改善合金的腐蚀行为,并在以林格氏溶液作为电解质进行测试时降低其腐蚀速率。关键词:生物材料;钴铬合金;快速凝固;髋关节和膝关节植入物;腐蚀。