视觉诱发电位(VEP)对周期性刺激通常用于大脑计算机界面中的有利特性,例如高目标识别精度,较小的训练时间和较低的目标干扰。传统的周期性刺激会导致由于连续和高对比度刺激而导致主观的视觉疲劳。在这项研究中,我们将准周期和混乱的复杂刺激与常见的周期性刺激进行了比较,以与基于VEP的大脑计算机界面(BCIS)一起使用。规范相关分析(CCA)和相干方法用于评估三个刺激组的性能。通过视觉模拟量表(VAS)评估了由提出的刺激引起的主观疲劳。使用M2模板方法使用CCA,与Quasi-periodic(M = 78.1,SE = 2.6,P = 0.008)和周期性(M = 64.3,SE = 1.9,SE = 1.9,P = 0.0001)相比,混乱刺激的目标识别精度最高(M = 86.8,SE = 1.8)。对疲劳率的评估表明,与准周期性(p = 0.001)和周期性(p = 0.0001)刺激组相比,混乱刺激引起的疲劳较少。另外,与周期性刺激相比,准周期性刺激导致疲劳率较低(p = 0.011)。我们得出的结论是,与具有CCA的其他两个刺激组相比,混沌组的靶标识别结果更好。此外,与周期性和准周期性刺激相比,混乱的刺激导致主观视觉疲劳较少,并且可以适合设计新的舒适的基于VEP的BCIS。
在过去十年中,图形处理单元 (GPU) 的进步推动了人工智能 (AI)、高性能计算 (HPC) 和数据分析领域的重大发展。要在这些领域中的任何一个领域继续保持这一趋势,就需要能够不断扩展 GPU 性能。直到最近,GPU 性能一直是通过跨代增加流式多处理器 (SM) 的数量来扩展的。这是通过利用摩尔定律并在最先进的芯片技术节点中使用尽可能多的晶体管数量来实现的。不幸的是,晶体管的缩放速度正在放缓,并可能最终停止。此外,随着现代 GPU 接近光罩极限(约 800 平方毫米),制造问题进一步限制了最大芯片尺寸。而且,非常大的芯片会导致产量问题,使大型单片 GPU 的成本达到不理想的水平。GPU 性能扩展的解决方案是将多个物理 GPU 连接在一起,同时向软件提供单个逻辑 GPU 的抽象。一种方法是在印刷电路板 (PCB) 上连接多个 GPU。由于提供的 GPU 间带宽有限,在这些多 GPU 系统上扩展 GPU 工作负载非常困难。封装内互连(例如通过中介层技术)比封装外互连提供更高的带宽和更低的延迟,为将 GPU 性能扩展到少数 GPU 提供了一个有希望的方向 [1]。晶圆级集成更进一步,通过将预制芯片粘合在硅晶圆上,为具有数十个 GPU 的晶圆级 GPU 提供了途径 [2]。不幸的是,使用电互连在长距离上以低功耗提供高带宽密度从根本上具有挑战性,从而限制了使用电中介层技术进行 GPU 扩展。在本文中,我们提出了光子晶圆网络 (NoW) GPU 架构,其中预先制造和预先测试的 GPU 芯片和内存芯片安装在晶圆级中介层上,该中介层通过光子网络层连接 GPU 芯片,同时将每个 GPU 芯片与其本地内存堆栈电连接,如图 1 所示。光子-NoW GPU 架构的关键优势在于能够在相对较长的晶圆级距离(高达数十厘米)内以低功耗实现高带宽密度。本文的目标是展示光子-NoW 的愿景
我们的模块化构造PFA工艺增强晶圆载体和传统模制PFA工艺晶圆载体是为200 mM Fabs的湿化学加工应用而设计的。开放式流动器允许解决方案均匀,快速地通过。它们也由耐化学的PFA材料构成,因此您的过程仍未受到污染。
有效地需要用能量转换器覆盖较大的表面。这是太阳能电池,也称为光伏的地方。光伏设备,首先是由法国科学家Henri Becquerel于1839年发现的,它通过产生电子对 - 在光伏材料中的孔对直接转化为电子。这些对创建了电流流,该电流遵循材料的内置势坡。太阳能电池已成为重要的替代电源,尤其是自1970年代的石油座舱以来。此外,太阳能电池是一种有希望的无碳能源,可以帮助减轻全球变暖。实现高效率太阳能转化对于使太阳能成为满足世界能源需求的可行选择至关重要。太阳能电池的能量转化效率是指电池产生的电力与电池每单位时间接收到的入射阳光能量的比率。
我们正在投入管理资源来扩大我们的业务并促进国际扩张。此次合资项目正是这样的一项举措。预计今后随着半导体市场的扩大,多晶硅的需求也将增加,我们与OCI成立合资公司,构建利用清洁能源的半导体用多晶硅的生产和供应体制,在抑制二氧化碳排放量增加的同时,加速扩大电子领域的事业。
残骸重建和一般紧固件装配过程。在一项关于航空工业点云配准的研究中,孙等[6,7]利用三维点云和测量技术开发了一套拼接飞机残骸的系统。结果表明,其粗配准精度为0.6毫米,可接受的配准精度为0.2毫米。王等[8]提出了一种用于飞机点云配准的通用密度不变框架。结果表明,与其他研究[9-11]相比,他们的方法具有更好的精度(0.6毫米——1.0毫米),以均方根误差(RMSE)评估。虽然精度有所提高,但所提出的方法适用于整个扫描飞机,而不是特定的部件。徐等[12]提出了一种紧固件装配的配准方法,其中利用局部几何特征和迭代最近点(ICP)算法。该配准方法用于扫描数据和 CAD 模型之间。结果表明,与单独使用 ICP 算法相比,所提出的方法具有更好的效率。但是,所提出的注册方法的不确定性并未披露。
院系课程要求 核心课程 一个学期的本科有机化学(CHM 301 或 CHM 302 或 CHM 304) 一个学期的本科无机化学(CHM 411 或 CHM 412) 一个学期的本科物理化学(CHM 305 或 CHM 306 或 CHM 406) 一个学期的核心实验室(CHM 371 或 MSE 302 或 PHY 312 或 CBE 346) 同源课程 另外四门院系课程或同源院系的课程。课程必须是高级课程(有先修课程)且化学成分较多。MAT/PHY(200+)、CHM/MOL/MAE/CBE/GEO(300+)课程可视为同源课程。由于每年开设的课程不尽相同,因此批准名单是动态的。请咨询 DUS 以确认课程资格。
本综述的主题是机器人中的几何配准。配准算法将数据集关联到一个公共坐标系中。它们已广泛应用于物体重建、检查、医疗应用和移动机器人定位。我们专注于需要配准点云的移动机器人应用。虽然这些算法的基本原理很简单,但已经针对许多不同的应用提出了许多变体。在这篇综述中,我们从历史的角度介绍了配准问题,并表明可以根据一些元素来组织和区分大量的解决方案。因此,我们提出了几何配准的形式化,并将文献中提出的算法投射到该框架中。最后,我们回顾了该框架在移动机器人中的一些应用,这些应用涵盖了不同类型的平台、环境和任务。这些示例使我们能够研究每个用例的具体要求以及导致配准实施的必要配置选择。最终,本评论的目的是为几何配准配置的选择提供指导。
纯方位估计是目标跟踪中的基本问题之一,也是具有挑战性的问题。与雷达跟踪的情况一样,偏移或位置偏差的存在会加剧纯方位估计的挑战。对各种传感器偏差进行建模并非易事,文献中专门针对纯方位跟踪的研究并不多。本文讨论了纯方位传感器中偏移偏差的建模以及随后的带偏差补偿的多目标跟踪。偏差估计在融合节点处处理,各个传感器以关联测量报告 (AMR) 或纯角度轨迹的形式向该节点报告其本地轨迹。该建模基于多传感器方法,可以有效处理监视区域中随时间变化的目标数量。所提出的算法可得出最大似然偏差估计器。还推导出相应的 Cram´er-Rao 下限,以量化所提出的方法或任何其他算法可以实现的理论精度。最后,给出了不同分布式跟踪场景的模拟结果,以证明所提出方法的能力。为了证明所提出的方法即使在出现误报和漏检的情况下也能发挥作用,还给出了集中式跟踪场景的模拟结果,其中本地传感器发送所有测量值(而不是 AMR 或本地轨道)。