摘要:金属配合物的化学性质在很大程度上取决于与金属中心配位的配体的数量和几何排列。现有的确定配位数或几何形状的方法依赖于准确性和计算成本之间的权衡,这阻碍了它们在大型结构数据集研究中的应用。在此,我们提出了 MetalHawk ( https://github.com/vrettasm/MetalHawk ),这是一种基于机器学习的方法,通过人工神经网络 (ANN) 同时对金属位点的配位数和几何形状进行分类,这些网络使用剑桥结构数据库 (CSD) 和金属蛋白数据库 (MetalPDB) 进行训练。我们证明,CSD 训练的模型可用于对属于最常见配位数和几何形状类别的位点进行分类,对于 CSD 沉积的金属位点,平衡准确度等于 96.51%。我们还发现,CSD 训练模型能够对 MetalPDB 数据库中的生物无机金属位点进行分类,在整个 PDB 数据集上的平衡准确度为 84.29%,在 PDB 验证集中手动审核的位点上的平衡准确度为 91.66%。此外,我们报告的证据表明,CSD 训练模型的输出向量可以被视为金属位点扭曲的代理指标,表明这些可以解释为金属位点结构中存在的细微几何特征的低维表示。
一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
图4显示了使用20倍交叉验证估计每个受试者的回忆间隔的结果。在图 4 中,横轴是时间,纵轴是来自 5 个受试者的 200 个样本(总共 1000 个样本)的准确率。红框内是语音回忆部分。前文研究 [2] 中的方法(图 4 中的蓝线)的准确率在语音回忆片段之间下降到 0.2,而本文提出的方法(图 4 中的橙线)则达到了 0.8 的稳定准确率。 从这些结果可以看出,可以说所提出的方法对于估计回忆间隔是有效的。然而,当我们观察所提出的方法在语音回忆部分之外的准确度时,我们发现与以前的研究相比,该方法将语音回忆部分之外的部分估计为回忆率的情况更为常见。这被认为是由于大脑中噪音的影响。因此,我们旨在通过将增加的 10 个样本应用于所提出的方法来减少这种噪音。结果就是图4中的绿线。在保持回忆部分的准确度的同时,非回忆部分的准确度得到了提高。基于这些结果,我们研究了所提出方法的最佳添加次数。结果如图5所示。图 5 显示了所有受试者对每个加法数字的准确率。蓝线表示整个时间内的平均准确率,橙线表示回忆期间的最大准确率。横轴是添加的样本数量,纵轴是准确率。通过添加 sigma,回忆部分的准确率得到了提高,达到了约 90%。另外,10 次添加等于 1 个样本。
通过 Muse 2 设备和冥想应用程序之间的蓝牙连接,利用物联网功能。该方法包括数据收集、预处理、特征提取和模型训练,同时利用物联网 (IoT) 功能。Muse 2 设备从多个电极记录 EEG 数据,然后在移动冥想平台内进行处理和分析。预处理步骤包括消除冗余列、处理缺失数据、规范化和过滤,利用支持物联网的技术。对 EEG 信号进行特征提取,利用平均值、标准差和熵等统计指标。使用预处理数据训练三种不同的模型,包括支持向量机 (SVM)、随机森林和多层感知器 (MLP),并结合基于物联网 (IoT) 的方法。使用准确度、精确度、召回率和 F1 分数等指标来评估模型性能,突出了物联网驱动技术的有效性。值得注意的是,MLP 和随机森林模型表现出了卓越的准确度和精确度,凸显了这种物联网集成方法的潜力。具体来说,这三个模型实现了较高的准确度,其中随机森林以 0.999 领先,其次是 SVM 以 0.959 和 MLP 以 0.99 紧随其后。这项研究不仅为脑机接口和辅助技术领域做出了贡献,还展示了一种将 Muse 2 设备无缝集成到冥想练习中的可行方法,通过物联网技术的附加功能促进自我意识和正念。
注意事项:• 定期监控模型性能/准确性并根据需要重建模型• 可以使用 F1 分数、精确度、召回率、AUC/ROC 曲线等准确度指标• 在评估中包括业务成功指标,例如 KPI(关键绩效指标)
airtecasia.com › 文件夹 › 航空-... PDF 2019 年 5 月 4 日 — 2019 年 5 月 4 日 Airtec 的数字飞机轮胎充气机涵盖广泛的...用途,并在准确度、精密度、可靠性方面提供显着改进和。4 页
2 鉴于数据集的不平衡,使用精确度-召回率曲线下面积 (PRAUC) 作为准确度指标 [21]。3 首先,排除观察次数少于 10 次的参与者,以便在 5 倍交叉验证方案中每倍至少有 2 次观察。其次,如果用户的观察结果只对应于一个结果(即,他们总是做这项练习或从不做这项练习),他们也会被排除,因为如果没有两个类别,则多个模型是未定义的。排除后会剩下一组 26 位用户,称为热启动队列。4 使用 5 个外倍,并报告保留倍的平均准确度。对于组倍,超参数在 5 个内倍上进行优化。但是,由于每个参与者可用的数据量很少,因此不会在个体级别模型上执行超参数调整。在这两个层面上,折叠都是随时间随机化的,这样可以减轻由季节影响(例如假期开始)引起的任何偏差。
简单总结:在本研究中,我们使用大量脑肿瘤图像解决了 MRI 扫描中脑肿瘤检测这一具有挑战性的任务。我们证明,通过迁移学习对最先进的 YOLOv7 模型进行微调可显著提高其在检测神经胶质瘤、脑膜瘤和垂体脑瘤方面的表现。我们提出的深度学习模型显示出令人鼓舞的结果,可以准确识别 MRI 图像中脑肿瘤的存在和精确位置。与标准技术相比,所提出的方法实现了更高的准确度,在我们的分析中准确度高达 99.5%。然而,我们承认,额外的调查和测试对于确保我们检测小肿瘤的方法的有效性至关重要。小肿瘤识别的复杂性需要对脑肿瘤识别进行持续研究并不断改进我们的检测系统。通过这条途径,我们旨在提高患者和医务人员在对抗脑癌的艰难斗争中的诊断能力。
摘要:自发现以来,脑电图 (EEG) 一直是识别患者某些健康状况的主要方法。由于可用的分类器类型很多,因此分析方法也同样繁多。在这篇评论中,我们将专门研究为生物工程应用的 EEG 分析而开发的机器学习方法。根据这些信息,我们能够确定每种机器学习方法的总体有效性以及关键特征。我们发现,机器学习中使用的所有主要方法都以某种形式应用于 EEG 分类。范围从朴素贝叶斯到决策树/随机森林,再到支持向量机 (SVM)。监督学习方法的平均准确度高于无监督学习方法。这包括 SVM 和 KNN。虽然每种方法在各自的应用中的准确性都有限,但希望如果正确实施,这些方法的组合具有更高的整体分类准确度。关键词:EEG 分析、EEG 信号、SVM。
摘要-医学图像处理的发展速度令人难以置信。由于各种癌症和其他相关人类活动,疾病的发病率不断上升,为生物医学研究的发展铺平了道路。因此,对这些医学描述进行分类和分析对于临床诊断具有重要意义。这项工作重点是使用预期的混合图像技术对脑肿瘤描述进行阶段有效分类和现有疾病图像的分割。讨论了医学图像的标记提取、特征收集以及图像分类和分割设计方面的挑战和目标。根据准确度、灵敏度、特异性和骰子比较索引系数,对所设计方法的初步结果进行了评估和验证,以对磁共振脑图像进行分类和优效性分析。实验样本的准确度达到 91.73%,特异性达到 91.76%,灵敏度达到 98.452%,证明了所提出的方法从智能 MR 图像中识别正常和非标准组织的有效性。