摘要 - 在简短读取映射的最后一步中,验证了参考基因组上读取的候选位置,以使用序列比对算法从相应的参考段中计算它们的差异。计算两个序列之间的相似性和差异在计算上仍然很昂贵,因为传统上近似的字符串匹配技术继承了具有二次时间和空间复杂性的动态编程算法。我们介绍了Gatekeeper-GPU,这是一种快速准确的预一致过滤器,可有效地减少对昂贵序列比对的需求。Gatekeeper-GPU提供了两个主要贡献:首先,提高了网守的过滤精度(轻巧的预先对准过滤器),其次,利用了由现代GPU的大量GPU螺纹提供的巨大平行性,以快速检查众多序列。通过减少工作,Gatekeeper-GPU提供2.9倍的加速度至序列比对,最高为1。4×加速到全面阅读映射器(MRFAST)的端到端执行时间。Gatekeeper-GPU可从https://github.com/bilkentcompgen/gatekeeper-gpu
常规的微生物测试对于在导致损害性能的问题之前保持至关重要,包括微生物学影响的腐蚀(MIC),过滤器堵塞和系统仪器故障。但是,当今市场上可用的测试套件仅提供速度或准确性,而不是两者兼而有之。用户被缓慢的结果妥协,这使得很难采取快速纠正措施,并且不够可靠地做出明智的决定。
公司的核心软件RT-LAB和Hypersim使用户能够快速开发适合实时模拟的模型,同时最大程度地减少初始投资及其拥有成本。OPAL-RT还开发了数学求解器和专门用于精确模拟电力电子系统和电网的模型。rt-LAB,Hypersim和Opal-RT求解器以及模型与高级字段可编程栅极阵列(FPGA)I/O和处理板集成,以创建用于RCP和HIL测试的完整解决方案。
我们详细介绍了机器学习自动级别的成功部署,该机器自动级别大大降低了分组计算机科学分配所需的分级人工。这项任务(将学生都任命为编程的游戏,该游戏由一个可控制的桨和一个球从桨上弹跳以折断砖头的游戏 - 很受欢迎,因为它吸引了具有入门计算机智能概念的学生,但产生了巨大的分级负担。由于游戏的互动性质,评分违反了传统的单元测试,而通常需要手动玩每个学生的游戏以搜索错误。这相当于标准课程提供的45小时的评分,并防止了进一步的分配。我们的自动骑士通过与强化学习者和为教师的发现错误的视频进行了每种学生游戏,从而减轻了这一负担。在用手动分级的A/B测试中,我们发现我们的人类AI自动载体将评分时间减少了44%,同时将分级准确度略有提高6%,最终在两份分配的产品中节省了大约30小时。我们的结果进一步表明,通过类似的机器学习技术对其他交互式作业(例如其他游戏或构建网站)进行分级的实用性。https://ezliu.github.io/breakoutgrader的实时演示。
https://doi.org/10.26434/chemrxiv-2023-8s8zw orcid:https://orcid.org/000000-0001-9525-8407 consemrxiv notect content许可证:CC BY-NC-ND 4.0
〒983-0852 宫城县仙台市宫城野区堤岡 4-2-3 仙台 MT 大厦 16 楼 电话:022-298-3777 传真:022-298-3780 邮箱:Webmaster@t-nid.co.jp URL:https://www.t-nid.co.jp
摘要。珊瑚礁是重要的生态系统,由于当地人类的影响和气候变化,其威胁越来越大。对珊瑚礁的有效,准确的监测对于它们的保护和管理至关重要。在本文中,我们提出了一个自动珊瑚检测系统,该系统只能使用一次(YOLO)深度学习模型,该模型是专门针对水下进化分析量身定制的。要训练和评估我们的系统,我们采用了一个由400个原始水下图像组成的数据集。,我们使用数据增强技术通过图像操纵将带注释的图像的数量增加到580,这可以通过提供更多样化的训练示例来改善模型的性能。数据集是从捕获各种珊瑚礁环境,物种和照明条件的水下视频中仔细收集的。我们的系统可以实现Yolov5算法的实时对象检测功能,从而实现有效而准确的珊瑚检测。我们使用Yolov5从带注释的数据集中提取区分特征,从而使系统能够概括,包括以前看不见的水下图像。在我们的原始图像数据集上,使用Yolov5成功实施了自动珊瑚检测系统,突出了先进的计算机视觉技术在珊瑚礁研究和保护中的潜力。进一步的研究将着重于完善算法以处理具有挑战性的水下图像条件,并扩展数据集以结合更广泛的珊瑚种类和时空变化。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月15日。; https://doi.org/10.1101/2023.07.14.549076 doi:biorxiv Preprint
摘要 - 硅悬挂的债券已将它们确立为超越CMOS技术领域的有前途的竞争者。它们的整合密度和在传统电路技术中的几个数量级的耗散耗散优势的潜力引发了学术界和行业的兴趣。虽然已经提出了制造能力,并且已经提出了第一次设计自动化方法,但物理模拟有效性尚未保持步伐。在该域中建立的算法遭受了指数运行时行为或低于PAR的精度水平。在这项工作中,我们提出了一种基于统计方法的硅悬挂键系统的物理模拟的新型算法,该方法既可以通过多个数量级和三个以上的数量级和三个以上的因素,既可以提供时间到解决方案和准确性优势,又可以通过精疲力尽的实验评估证明。
本文提出了基于物理的,还原的电化学模型,这些模型比电化学伪2D(P2D)模型快得多,同时即使在高C速率的挑战性条件下,也提供了较高的精度,并且在电池中锂离子浓度的较高极化和强度的极化。尤其是通过使用形状函数来开发创新的方程式弱形式,从而将完全耦合的电化学方程和传输方程降低到普通微分方程,并为多项式系数的演变提供自洽的解决方案。结果表明,称为修订后的单粒子模型(RSPM)和快速计算的P2D模型(FCP2D)的模型提供了对电池操作的高度可靠预测,包括动态驾驶轮廓。他们可以计算电池参数,例如终端电压,过电位,界面电流密度,锂离子浓度分布和电解质电位分布,相对误差小于2%。适用于适度高的C速率(低于2.5 C),RSPM的速度比P2D模型快33倍以上。FCP2D适用于高C速率(高于2.5 C),比P2D模型快8倍。凭借其高速和准确性,这些基于物理的模型可以显着提高电池管理系统的功能和性能,并加速电池设计优化。关键字:锂离子电池;减少阶模型;修订后的单粒子模型(RSPM);快速计算P2D模型(FCP2D);准确性;效率