这项研究研究了通过定向能量沉积(DED)处理的基于Co-Ni-al-W-TA-TI-CRγ/γ'基于钴的凝固路径中出现的隔离和降水。观察结果揭示了添加剂制造过程中液体中划分的特征元素。由于这种微层次,发生复杂的多相沉淀,并且在由DED制造的基于钴的超合金中鉴定并表征了各种沉淀物。扫描电子显微镜(SEM)和透射电子显微镜(TEM)用于研究在实用的显微组织中检测到的各个阶段的空间分布和性质。能量色散X射线光谱法(EDS),波长色散X射线光谱法(WDS)和电子能量损耗光谱(EEL)与衍射模式的精细分析相结合,以识别装饰互构成区域的不同阶段。这些特征允许鉴定不同的亚微音沉淀:Al 2 O 3,(Ta,ti)(n,c),HFO 2,Cr 3 B 2和(Ti,Ti,Zr,Hf)2 Sc。根据实验结果讨论凝固序列。这项工作提供了对固化隔离和在DED处理的基于钴的超合金中的第二相降水之间相互作用的首次了解。关键字γ/γ'Superaly合金;增材制造;第二相降水; tem
定向能量沉积是一种 3D 打印方法,它使用聚焦能量源(例如等离子弧、激光或电子束)来熔化材料,然后通过喷嘴同时沉积。与其他增材制造工艺一样,该技术用于向现有组件添加材料、进行维修或制造新部件。直接能量沉积增材制造技术已引起业界的广泛关注,用于制造/维修在用组件。然而,该过程经历了复杂的熔化和凝固动力学,对有效控制晶粒结构提出了挑战,从而导致潜在的结构故障。这项研究旨在调查使用高强度超声波控制凝固过程和扩大系统规模以制造大型组件的潜力。从可行性研究中可以看出,超声波可以帮助细化晶粒结构,还可以减少孔隙率等异常。在可行性研究中,考虑了一系列频率和功率配置,以简化系统的扩大。根据所研究的超声波配置,最终确定在放大生产中使用 40 kHz 60 W 配置。还注意到,由于凝固过程中的成分过冷降低了熔池主体的温度梯度,因此超声波辅助增材制造中的热裂纹减少了。此外,还注意到晶粒取向垂直于振动方向,这有可能用于根据需要控制晶粒取向。这一新发现为开发超声波辅助增材制造工艺提供了新的应用。
细磨的无机材料,与水混合后形成糊状物,通过水合反应和过程凝固和硬化,硬化后即使在水下也能保持其强度和稳定性。对于沥青,骨料主要保留在 2.0 毫米试验筛上,并且所含材料不比 BS EN 13043 中允许的各种尺寸更细。对于混凝土和砌块制造,骨料主要保留在 4.0 毫米试验筛上,并且所含材料不比 BS EN 12620 中允许的各种尺寸更细。
prep(等离子体旋转电极工艺,AMS 4999a)是一种公认的金属粉末,通过在纵向轴时熔化金属棒的末端。融化的金属被嘲笑,并形成凝固成球(粉末颗粒)的液滴。电极被等离子体融化。我们的粉末是根据准备过程的扩展而产生的,即所谓的ss-prep过程。这使我们能够提供更高质量和球形粉末(根据ISO 13320:2009)。我们已经通过单个步骤和相关机器显示了以序列顺序为您的信息的制造过程。
本技术备忘录 (TM) 首先回顾了与太空焊接相关的现有文献,重点关注微重力下的凝固、热量和质量传递以及流体流动。本调查研究了微重力下焊接对材料系统的影响。检查了之前设计和测试过的各种太空焊接设备,以确定它们的能力和缺点,重点关注它们各自的焊接实验结果。讨论了在焊接操作期间保护轨道国际空间站 (ISS) 和机组人员的安全措施。最后,通过关注多家公司与 NASA 合作开发的 AM 和在轨焊接的当前方法来检查最新技术。
从无机工业废水污水中去除金属和重金属,传统上依赖于凝固和降水。这种方法背后的想法很简单:将溶解的污染物转换为可容易从水中去除的固体颗粒。水电X形成重金属作为氢氧化物的不溶性沉淀物。这是Hydro X所基于的核心概念。Hydro X脱颖而出是最先进的固化技术。羟基自由基在不添加外部催化剂的情况下氧化靶污染物分子。通过将pH调节/调整到强大的基本条件为9.5 - 10。建议自动pH控制。
BME 464/564 低温等离子体的生物医学应用(3 学分)本课程与 ECE 和生物学交叉列出。它旨在供高年级本科生和一年级研究生选修。课程内容是多学科的,结合了工程学和生物科学的材料。本课程涵盖非平衡等离子体、低温等离子体源和细胞生物学的基础知识。随后详细讨论低温等离子体与生物细胞(原核生物和真核生物)的相互作用。将涵盖医学中的潜在应用,例如伤口愈合、血液凝固、灭菌和杀死各种类型的癌细胞。先决条件:高年级