大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异
有没有一种好的方法可以解释航空业的非二氧化碳效应?一个问题是如何衡量非二氧化碳效应与二氧化碳引起的气候变化之间的关系。人们可能倾向于使用航空业引起的总辐射与仅来自航空业二氧化碳排放的辐射之间的比率,即所谓的辐射强迫指数 (RFI)。然而,辐射强迫指数是一种回顾性指标,即它解释了过去发生的所有过程的影响。如图 1 中的红色条所示,2000 年的航空业辐射强迫指数累计了自 1940 年以来航空业的所有贡献,并根据各个物种的生命周期进行了加权。虽然 NOx 引起的臭氧和凝结尾迹的 RF 基本上仅来自 2000 年的空中交通,但 CO 2 引起的 RF 则来自自 1940 年以来累积的 CO 2。对于恒定的机队和航空排放,臭氧和凝结尾迹的 RF 是恒定的,但航空 CO 2 引起的 RF 会增加,因为 CO 2 会进一步积累。因此,
飞机尾迹是飞机在温度约为 −40°C 及以下时在对流层上部排放的产物,是人类对地球气候最明显的影响之一。最初,飞机尾迹的微物理特性与自然卷云不同,但随着时间的推移,飞机尾迹会失去形状并扩散,变得与自然卷云几乎无法区分,不仅在视觉上,而且在微物理特性上也是如此。飞机尾迹是消失还是发展成飞机尾卷云取决于环境相对湿度相对于冰。飞机尾迹将在充满冰的大气中持续存在。在过饱和状态下,冰晶会形成并提取过量的环境水蒸气。但是,线状飞机尾迹向卷云的转变尚不十分清楚,气候模型也没有很好地描述它。凝结尾迹的形成可以用施密特-阿普尔曼准则 (SAC) 1 来描述,这是一个简单的方程,它与大气温度和气压、燃料能量含量、排出的水蒸气量以及飞机的整体推进效率有关。SAC 预测可见凝结尾迹形成条件的可靠性已得到证实。
飞机充当高空排放载体,将大量放射性和化学活性物质运送到全球广大地区。这些物质引起的净全球变暖效应占全球气候变化的 3.5%,这是由于人类活动排放造成的 [ 1 ]。虽然二氧化碳 ( CO 2 ) 排放通常被认为是航空引起气候变化的主要因素,但它们只占航空净气候影响的三分之一。其余三分之二的影响归因于反应性非二氧化碳排放,主要是氮氧化物 ( NO x )、水蒸气 ( H 2 O ) 和颗粒物 ( PM )。这些排放物通过化学和微物理过程与周围空气相互作用,导致辐射活性物质的产生和消耗,从而扰乱大气的净能量平衡(例如,NO x 引起的臭氧生成、通过 H 2 O 和 PM 排放产生的凝结尾迹(凝结尾)等)。由于非 CO 2 飞机排放的反应性,气候响应因背景大气的状态(即其化学成分和气象条件)以及排放物释放的时间和年份而异。这意味着航空气候影响在时空上敏感,即在不同时间和/或地点释放的相同排放物可能导致非常不同的大气影响。飞机排放物的扩散发生在很长的距离和时间尺度上,排放物夹带在飞机排气羽流中,在其长达 12 小时的生命周期内扩散数百公里 [ 2 , 3 ]。羽流中存在的排放化学物质浓度升高会导致额外的非线性化学(气相和非均相)和微物理处理,由于固有假设排放瞬时扩散 (ID),这通常不在全球化学模型中得到考虑。
航空事实 ❚❚ 平均每三秒就会有一架飞机离开地球表面。❚❚ 从统计上讲,航空运输是最安全的交通方式。❚❚ 直升机最初实际上是由列奥纳多·达·芬奇于 1483 年构思出来的。❚❚ 一架波音 747 有 18 个轮子、一个螺旋楼梯,机翼上可以停放 45 辆汽车。❚❚ 在起飞功率下,流过一台波音 767-400ER 发动机的空气可以在七秒内给固特异飞艇充气。❚❚ 乘坐波音 767-400ER 从纽约飞往伦敦(约 5,580 公里)时,每位乘客大约需要 227 升燃油。相同体积的汽油只能推动一辆经济型汽车行驶该距离的一半。❚❚ 一架波音 747-400 有 600 万个零件,其中一半是紧固件。❚❚ 直升机在恶劣天气下飞行比固定翼飞机更安全,因为它们可以减速、悬停以及向后或侧向飞行。❚❚ 飞机的机长和副驾驶在飞行过程中总是吃不同的饭菜,以防其中一人生病。❚❚ 波音 747 上的每个引擎重近 4,300 公斤,成本约为 800 万美元,巡航时每分钟燃烧约 45.4 升燃料。总共四个引擎占整架 747 起飞时总重量的约 5%。❚❚ 平均而言,每小时有 61,000 人在美国上空飞行。❚❚ 无人驾驶飞行器 (UAV)(也称为遥控飞行器 [RPV] 或无人机系统 [UAS])是一种无需人类机组人员飞行的飞机,由地面控制站的人类机组人员驾驶。❚❚ 飞机后面的“白烟”实际上是水蒸气与废气的混合物;它被称为凝结尾迹或“尾迹”。水是燃烧的副产品。根据大气条件,尾迹每天都会出现在特定的高度。❚❚ 跑道是根据盛行风选择的,因为飞机通常或多或少地迎风起飞和降落。
AHR Goldie 博士于 1912 年 1 月去世,享年 7.5 岁,他一生中有一半以上的时间都是英国气象界的活跃人物。他于 1914 年成为该协会的会员,并曾担任顾问和副主席。Archibald Hayman Robertson Goldie 于 1918 年出生于安格斯的 Glenisha,是牧师 Andrew Goldie 的儿子。在邓迪的哈里斯学院上学后,他在圣安德鲁斯大学和剑桥大学圣约翰学院以优异的成绩学习,并于 1913 年以数学 Tripos 的成绩毕业。他于 1913 年 8 月进入气象办公室,是 1918 年战争前当时的主任 Ilr. WN Shaw(后来的纳皮尔爵士)招募的最后一批具有高科学资质的人员之一。戈尔迪在气象局的最初经验是在总部、法尔茅斯天文台(当时他希望为英格兰西南部建立一个气象中心)和埃斯克代尔缪尔天文台任职的相对较短的一段时间内获得的。1915 年,戈尔迪被任命加入新成立的气象部门,随后在法国任职,在意大利北部任职六个月,直到 1918 年 11 月停战后,他以少校身份指挥总部设在科隆的占领军气象部门。1919 年 11 月复员后,他回到伦敦的气象局总部,负责管理主要为满足航空、民用和军用气象需求而设立的当地中心网络。1921 年秋,他接替了戈尔迪。 A. Crichton 被任命为爱丁堡气象局局长,负责苏格兰的气候和一般咨询工作以及阿伯丁、埃斯克代尔缪尔和勒威克的天文台:事实证明,这项任命对他来说非常合适,而且卓有成效。他于 1925 年成为爱丁堡皇家学会会员,并于 1936 年在圣安德鲁斯大学获得理学博士学位。当 1938 年初制定扩大气象局研究活动的计划时,Goldie 被调到伦敦担任助理主任,特别负责该领域,但在当年晚些时候战争爆发后,他搬到了格洛斯特郡的斯通豪斯,负责管理撤离到那里的气候、仪器和海洋部门。 1941 年,气象研究委员会成立,由于战争爆发而推迟,此后直到 1953 年,他一直密切参与其行政和其他活动。1948 年,他成为副首席科学官,并被任命为研究副主任,负责办公室内研究的总体协调,更直接的研究方向是气象物理学,包括气象研究飞行队进行的研究、低层大气湍流研究、仪器开发和天文台工作。1950 年初,气候学和海洋分支再次归到他的领导下。戈尔迪曾参与英国国家大地测量和地球物理委员会、大气污染研究委员会 (DSIR) 和阵风研究委员会(由航空研究委员会赞助)。1936 年至 1947 年,他担任国际地磁和大气电协会秘书。1951 年,他被任命为 CHE。1953 年 5 月退休,在气象局工作近 40 年后,他回到苏格兰,住在斯特灵。尽管戈尔迪还有其他官方承诺,但他对科学研究的热情一直没有改变。在他退休时,据记载,他“具有非凡的管理能力,能够同时进行高水平的个人研究”。从 1923 年起,大约 30 年间,他在该学会、爱丁堡皇家学会和气象局的出版物上发表了 17 篇论文。此外,他还为科学期刊发表了几篇短文。1934 年,他修订并大量重写了 Abercromby 于 1887 年首次出版的著名著作《天气》。他的论文总体上表明,他坚持不懈地致力于阐明大气过程机制的细节,并能够最大限度地利用当时可用的观测数据。这里只能简要地提及他的主要贡献主题,大致按时间顺序排列:高压和低压条件下高空温度的分布;大气中波浪的形成及不连续水平面的其他特性;风的阵性;受昼夜变化影响的大气结构和运动;地磁暴中的高大气电流系统;不同气团和低气压锋面的降雨特性;贝尔岩灯塔的风结构分析;不列颠群岛的年平均空气环流;低气压和涡旋低气压的运动学特征;飞机凝结尾迹的形成条件;气旋和反气旋的动力学;全球一般环流问题。戈尔迪博士是一个非常可爱的人。他在私人和职业生活中都有很高的个人标准。他在工作中注意节约用力,但在必要时也不吝啬努力。他总是帮助同事,并以身作则,发挥很大的影响。他热情好客,对同事及其家人十分关爱。1928 年,他与 Marion Wilson 结婚,后者于 1048 年去世;1952 年,他与协会会员 Helen Carruthers 结婚。