DS 50 0.50 - 0.60 微米 (2.0 - 2.3) 米²/克 0.40% 0.08% DS 60 0.60 - 0.70 微米 0.40% 0.08% DS 70 0.70 - 0.80 微米 0.30% 0.06% DS 80 0.80 - 0.90 微米 0.25% 0.06% DS 90 0.90 - 1.00 微米 0.25% 0.06% DS 100 1.00 - 1.20 微米 0.25% 0.06% DS 120 1.10 - 1.30 微米 0.12% 0.06% DS 130 1.20 - 1.40 微米 0.12% 0.06% DS 150 1.40 - 1.60 微米 0.12% 0.06% DS 180 1.70 - 1.90 微米 0.12% 0.06% DS 200 1.90 - 2.10 微米 0.12% 0.06% DS 250 2.30 - 2.70 微米 0.10% 0.06%
探测器、超大样本环境(≈3 2 1.5 m 3 )的定位能力光束线概念 AMP 光束线是一条相干和非相干小角和广角散射((c)-SAXS/WAXS)光束线,用于对真实条件下正在加工或操作的材料进行时间分辨的微束原位/操作研究。AMP 旨在测量材料的结构和动态,跨越从埃到微米的长度尺度,具有微米空间分辨率和几十微秒时间分辨率。其主要特性是能够容纳高达 3×2×1.5 m 3 的大型样本平台和辅助表征技术。这种大样本区域还可用于中等规模样本环境的多设置,能够在不同设置和随附的 X 射线束设置之间自动切换。
超导量子电路是开发可扩展量子计算机最有前途的解决方案之一。超导电路采用超导制造技术和微波技术制造而成,尺寸从几微米到几十米不等,在低温下表现出叠加和纠缠等独特的量子特性。本书全面、完整地介绍了超导量子电路的世界以及它们在当前量子技术中的应用。作者首先描述它们的基本超导特性,然后探讨它们在量子系统中的应用,展示它们如何模拟单个光子和原子,并最终在高度连接的量子系统中表现为量子比特。特别关注这些超导电路在量子计算和量子模拟中的前沿应用。这本通俗易懂的教材是为研究生和初级研究人员编写的,包含大量家庭作业和例题。
在这项研究中,不锈钢316L和Inconel 625合金粉是通过使用定向的能量沉积过程加上制造的。对粘合不锈钢316L/Inconel 625样品的硬度和微观结构的热处理效应。微观结构表明,除了几个小裂缝外,不锈钢316L和Inconel 625之间没有次要相和界面区域附近的大夹杂物。TEM和Vickers硬度的结果表明,界面区域的厚度几十微米。有趣的是,随着热处理温度的升高,不锈钢区域的裂纹不会改变形态,而不锈钢316L的硬度值和Inconel 625的硬度值也下降。这些结果可用于使用定向能量沉积的不锈钢316L材料的表面处理管道和阀门,并通过表面处理材料进行表面处理。关键字:定向能量沉积,界面,物理特性,热处理
单载流子信息处理设备内的连接需要传输和存储单个电荷量子。单个电子在被限制在移动量子点中的短小、全电 Si/SiGe 穿梭设备(称为量子总线 (QuBus))中被绝热传输。这里我们展示了一个长度为 10 μ m 且仅由六个简单可调的电压脉冲操作的 QuBus。我们引入了一种称为穿梭断层扫描的表征方法,以对 QuBus 的潜在缺陷和局部穿梭保真度进行基准测试。单电子穿梭穿越整个设备并返回(总距离为 19 μ m)的保真度为 (99.7 ± 0.3) %。使用 QuBus,我们定位和检测多达 34 个电子,并使用任意选择的零电子和单电子模式初始化一个由 34 个量子点组成的寄存器。 28 Si/SiGe 中的简单操作信号、与工业制造的兼容性以及低自旋环境相互作用,有望实现自旋量子比特的长距离自旋守恒传输,从而实现量子计算架构中的量子连接。
石墨烯领域最近出现的另一项进展是多孔石墨烯,它被认为是石墨烯/GO 的独特结构衍生物。图 1a 显示了过去几年中关于多孔石墨烯的出版物数量不断增加。这一趋势表明人们对该材料的兴趣日益浓厚,因为它具有独特的性能和多功能性,并且可能应用于不同的科学和技术领域。多孔石墨烯 (HG) 被定义为基面上具有大量孔或孔的石墨烯材料。孔径大小可以从几纳米到几十纳米到几微米不等,可以通过各种方法和技术创建。示意图(图 1b)显示了几个石墨烯层,其基面上有任意分布的孔。当 HG 片组装成 3D 多孔材料时,就被称为“多孔石墨烯”;10,11 因此,
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
现在,表面微加工是半导体制造技术的直接延伸。直接延伸意味着,它来自 VLSI 加工中使用的常规蚀刻。体微加工不是直接延伸,因为常规 VLSI 工艺不需要蚀刻到 300 微米、400 或 500 微米。但这里的表面微加工蚀刻范围是几微米、1 微米或 2 微米;在某些情况下也可能是 500 埃。这就是为什么他们提到这些表面微加工现象是半导体制造工艺的直接延伸,因为蚀刻深度与 VLSI 工艺大致相同。下一点是,它可以制造比体微加工小一个数量级的器件,数量级为 50 到 100 微米。这意味着,制造设备可以制造得更小,尺寸小一个数量级。原因是如果你追求更高的蚀刻,更高的蚀刻深度,那么自然就会有一些倾斜部分没有被蚀刻,就像金字塔结构一样。因此,你必须留出一定的空间,但如果你追求的是范围内非常小的蚀刻量