我们在用户级别的隐私下研究了差异化私有随机凸优化(DP-SCO),每个用户可以持有多个数据项。用户级DP-SCO的现有工作要么需要超多项式运行时[Ghazi等,2023b],要么要求用户数量在问题的维度上以额外的严格影响[Bassily and Sun,Sun,2023]在问题的维度上生长。我们为用户级DP-SCO开发了新的算法,这些算法在多项式时间内获得了凸面和强烈凸功能的最佳速率,并要求用户数量仅在维度上对数增长。我们的算法是第一个在多项式时间内获得非平滑函数的最佳速率。这些算法基于多通道DP-SGD,与集中数据的新型私人平均估计程序合并,该过程在估算梯度的平均值之前对较高的删除步骤进行了分类。
1新加坡国立大学量子技术中心,新加坡3科学驱动器2,新加坡117543 2量子量子信息和计算机科学和量子学院联合中心,NIST/马里兰州,马里兰州,马里兰州大学公园,20742,美国20742,美国3美国高性能计算研究所(IHPC)16-16 Connexis, Singapore 138632, Republic of Singapore 4 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, Singapore UMI 3654, Singapore 5 National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore 6 School of Electrical and Electronic Engineering Block S2.1, 50 Nanyang Avenue, Singapore 639798,新加坡7物理学系印度理工学院 - 孟买,孟买,孟买400076,印度8量子信息卓越中心,计算,科学和技术卓越中心,印度孟买孟买,孟买,印度400076
本文研究了网络化多智能体系统中的学习增强分散式在线凸优化,这是一个尚未得到充分探索的具有挑战性的场景。我们首先考虑一种线性学习增强分散式在线算法(LADO-Lin),该算法以线性方式将机器学习(ML)策略与基线专家策略相结合。我们表明,虽然 LADO-Lin 可以利用 ML 预测的潜力来提高平均成本性能,但它不能保证最坏情况的性能。为了解决这个限制,我们提出了一种新颖的在线算法(LADO),该算法自适应地结合 ML 策略和专家策略来保护 ML 预测,从而实现强大的竞争力保证。我们还证明了 LADO 的平均成本界限,揭示了平均性能和最坏情况鲁棒性之间的权衡,并展示了通过明确考虑鲁棒性要求来训练 ML 策略的优势。最后,我们对分散式电池管理进行了实验。我们的结果突出了 ML 增强在提高 LADO 的平均性能以及保证的最坏情况性能方面的潜力。
自然表达为对所有测量值的实现线性函数的优化,并具有固定数量的结果。在量子克隆[BDE + 98,SIGA05]和量子货币的密切相关概念[AFG + 12]的研究中出现了其他例子,其中人们普遍有兴趣知道,最佳选择的量子通道可以如何将一个给定状态的单个副本转换为相同状态的多个副本,以相对于多个差异图的多个差异。可以在量子复杂性理论中找到另一个示例,其中两种量子量子交互式证明系统[JUW09]自然分析为优化问题,在该问题中,目标函数描述了给定的验证者接受的概率,并且在所有量子通道中,优化的范围都在所有尺寸的量子通道中描述了可能的操作范围。关于在所有测量值中定义的线性函数的优化,并通过HOLVO [HOL73B,HOL73A]和YUEN,KENNEDY,KENNEDY和LAX [YKL70,YKL70,YKL75,YKL75,YKL70,YKL70,YKL75]确定了固定数量的结果,以实现最佳状态的必要条件。这些条件在本文稍后在本文稍后明确描述,相对容易检查;实际上,通过使用半有限编程[JVF02,IP03,EMV03],可以实际发现或近似最佳测量的问题,而有效解决的问题通常是一项更具计算机的任务。这些最佳条件可以很容易地扩展,以获得在所有量子通道的集合中定义的实现线性函数的最佳条件,从而将一个量子系统转换为另一个量子系统。我们证明了这些结果的概括,即凸出功能不一定是线性的凸出优化问题。更准确地说,我们考虑了形式的优化问题最小化f(φ)受φ∈C(x,y),(1),(1)
∗ 斯坦福大学和拍卖学。电子邮件:milgrom@stanford.edu † 斯坦福大学和拍卖学。电子邮件:mwatt@stanford.edu。感谢 Mohammad Akbarpour、Martin Bichler、Robert Day、Ravi Jagadeesan、Fuhito Kojima、Shoshana Vasserman 以及斯坦福大学、苏黎世大学、NBER 市场设计工作组、西蒙斯劳弗数学科学研究所和第 32 届石溪国际博弈论会议的研讨会参与者,以及对本项目提出的有益意见和建议的审稿人。本文的扩展摘要发表在第 23 届 ACM 经济与计算会议 (EC'22) 的论文集上,2022 年 7 月 11 日至 15 日,美国科罗拉多州博尔德,题为“无凸性市场的线性定价机制”。本文的早期草稿以“非凸经济的瓦尔拉斯机制和约束形式第一福利定理”为题发表。米尔格罗姆感谢美国国家科学基金会 (拨款编号 SES-1947514) 的支持。瓦特感谢斯坦福大学 Koret 奖学金、Ric Weiland 研究生奖学金和 Gale and Steve Kohlhagen 经济学奖学金的支持。
磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。
引言 产业界要求器件薄、轻、短、小、性能高,细间距、高密度封装成为必然手段。然而,为了完全实现产业化,许多特性还有待改进,如散热、导电性、热导率、尺寸精度等。此外,在3D封装组装结构中,特别是像堆叠封装(PoP),焊料凸块可能会因为顶部封装的重量而坍塌。几年前,产业界引入了铜芯焊球来改善这些问题。顾名思义,铜芯焊球以球形铜为芯,在中心镀镍和焊料[1]-[2]。镀镍可有效防止锡和铜之间的扩散。铜芯焊球本身具有优异的导电特性和间隙高度优点,可以控制和保持一致的空间,防止封装之间的凸块坍塌。除此之外,Cu还有三大物理特性:高熔点(1083℃)、高电导率、高热导率。
简介 直接键合是一种在室温下自发的电介质-电介质键合,通过低温批量退火工艺(200°C – 300°C)实现金属-金属连接(此处为 Cu-Cu 键合)。因此,直接键合工艺对于异质集成具有吸引力,并且与使用焊料的微凸块键合相比具有多种优势 [1, 2]。此外,对于这种无金属帽键合工艺,互连密度和互连缩放限制较少。该技术可以消除电气短路的风险,因为键合过程中不会有焊料从微凸块中挤出,这对于细间距应用至关重要。通过混合键合成功开发晶圆-晶圆键合,导致该技术迅速引入大批量制造 [3]。混合键合互连在 Cu/Cu 界面处表现出出色的可靠性和稳定的微观结构,这已在最近的研究中发表。[4, 5, 6]
•量子通信的许多关键组成部分来自少数公司•大多数集中在欧盟,北美和中国的供应商•供应连锁店通常很容易受到伤害:对特定技术的长期赌注很容易•当前的数量需求较低•当前的数量较低•当前的数量较低:大多数情况下仍然是一个有意义的限制或新的限制。扩展其投资组合/研究领域
eco4将越来越多地将支持对所有者的家庭居住,与其他政策保持一致,以使住房股票脱碳。对于私人租赁部门,我们建议低收入租户将有资格获得支持,但要根据更新的最低能源效率标准(MEES法规)商定的房东成本上限。在E,F和G乐队中的社交住房也将得到隔热,首次中央供暖措施和智能加热控制措施的支持。eco4旨在在英格兰,苏格兰和威尔士提供。在英格兰,房屋升级赠款将支持升级到表现最差的气体瓦格房屋。