使用∂H(·)提供的一阶信息通过某些迭代过程最小化h函数h时,基本细分的连续性将作为至关重要的问题出现。看来,上述亚差异的人都没有作为多功能的连续,只有mordukhovich和Clarke是外部半连续的。在算法方案中,缺乏细分差异的内部半符号阻碍了关键证书的定义。此类证书的目的是双重的。首先,它们允许使用一个足够接近某个临界点的解决方案来停止迭代过程。同时,它们提供了临界条件0∈∂H(Z)的渐近满意度。也就是说,如果临界点满足某些子构想的条件,则只有多函数的内部半接对性∂H(·)确保构建序列{gn∈(z n)}→0对于任何序列{z n}→Z→z→0都是可能的。
摘要凸理论是数学的一个完善的(尽管不是主流)分支,在各种环境中的应用包括“连续”和离散的结构[14]。这种多功能性部分是因为在集合上的凸度定义类似于拓扑结构。特别是,集合x上的凸度是其子集的任何集合C,满足三个简单的公理:∅,x∈C; C在任意交集下关闭; C在嵌套工会下关闭。C的元素称为凸集。在集合x上建立凸度的一种方法是从间隔运算符开始,这是从x×x到x(此类映射也称为二进制超操作)的映射I(x,y∈I(x,x,y)和i(x,x,y)= i(y,y)= i(y,x)= i(y,x)= i(y,x)= i(y,x)= i(y,x)。我们将i(x,y)解释为“在”给定x,y∈X的所有元素的集合。随后,我自然会通过声明A集a⊂x凸面来诱导x上的凸度,但如果i(x,y)⊂a a for All x,y∈A。The most well-known examples of convexities arising this way are convexities induced by metric intervals [ x, y ] d = { z ∈ X : d ( x, z ) + d ( z, y ) = d ( x, y ) } in metric spaces and linear intervals [ x, y ] l = { αx + (1 − α ) y : α ∈ [0 , 1] } in normed spaces.实际上,固定集X上的所有凸与X上的所有间隔运算符之间都有GALOIS连接(请参阅命题2.2.1)。图理论,由于顶点对之间的多种路径,自然定义了几个间隔操作器(诱导相应的凸度)。本文结构如下。最短的路径,诱导路径,局部最短路径,无弦路径和其他路径家族产生的间隔操作员如下。如果p是图G中的路径集合,其中g中的每对顶点均与p的至少一个元素连接在一起,然后将i p(x,y)= {z∈V(g)放置在p上的某个路径上,从p连接x,y}。在本文中,我们关注由Interval Operator I P引起的全路径凸度,其中P是给定图中所有(简单)路径的集合。最初,[9]中考虑了这种特殊的凸度,并且[8]中建立了与该凸度有关的经典问题的算法方法。我们还指工作[3],其中相应的间隔运算符以抽象的方式表征。在第2节中,我们概述了所有在工作中将使用的所有基本定义和初步结果。特别是,第2.1节涵盖了图理论的基础,第2.2节介绍了凸空间,间隔运算符和图形中的全路径的所有必要背景。在第3节中,我们提出了我们的主要结果。首先,我们在第3.1节中给出了全路径凸集的新表征。也就是说,定理3.1.1提供的理论标准比[8]中的理论标准更多,该标准可以轻松地用于获取所有PATH凸集集的所有已知重要属性。此外,定理3.1.1允许我们获得块图(定理3.1.2)的新表征,并在第3.2节中计算All-Path covexity(定理3.2.1)的一般位置号。All-Path的标准
3 木质底层地板:首先移除所有现有地板覆盖物。不应有霉菌和/或昆虫侵染的迹象。确保底层地板平整。用钉子固定所有松动部分。如果木质底层地板平整(1 米长度内不大于 2 毫米的不平整度):您可以安装任何 QS 底层地板。如果木质底层地板不平整,且凹凸度 > 2mm 且 < 4mm(由于木质底层地板板弯曲,因此可以安装 QS Thermolevel 衬垫。如果木质底层地板不平整,且凹凸度 > 4mm,则必须安装纤维找平化合物或衬垫 + 胶合板 / OSB 找平地板。将新地板与现有底层地板成九十度安装。木板地板下的爬行空间必须通风良好。移除所有障碍物,确保通风良好(每平方米 (40”) 地板至少有 4 厘米 (1/2”) 的总通风口)。木材的含水量不得超过 10%。
摘要。Wasserstein Barycenters以几何有意义的方式定义了概率度量的平均值。它们的使用越来越流行在应用领域,例如图像,几何或语言处理。在这些领域中,人们的概率度量通常无法全部访问,并且从业者可能必须处理统计或计算近似值。在本文中,我们量化了此类近似值对相应的barycenters的影响。我们表明,在相对温和的假设下,Wasserstein Barycenters以一种连续的方式依赖于边缘的方式。我们的证据取决于最近估计,该估计值允许量化Barycenter功能的强凸度。探索了有关瓦瑟尔恒星重中心的统计估计的后果以及正规化的瓦斯汀·巴里中心对其非规范化对应物的收敛。探索了有关瓦瑟尔恒星重中心的统计估计的后果以及正规化的瓦斯汀·巴里中心对其非规范化对应物的收敛。
现在,让t⊆z为封闭的子集,因此∂z\ t =∪uℓu是是一个脱节间隔的集合。让p为z的中心,定义cℓ=∪x∈Uℓγpx,其中γx,y表示连接x和y的线,是与开放式集合uℓ相关的扇区的集合。让我们观察到任何x∈∂z,沿(x,1)∈X0的曲率沿∂z×{1}的正常方向 +∞,并且沿其切向方向严格为正。这将使我们能够在其凸面壳Cℓ×[0,1]内平滑地“打开” uℓ×{1},从而保留了x 0的凸的凸度和切线锥的x 0 \(∪cℓ×[0,1])的点。令x1∈Alex3(0)为结果空间。特别是,保留了T×{1}点处的切线锥,因此我们有S 1ϵ(x 1)=(t×{1})∪(∂z×{0})。同样,我们可以平滑接近∂z×{0},以便用s 1ϵ(x 2)= t×{1}构造x 2。现在让y 2为x 2的加倍,现在是一个无边界的alexandrov空间y2∈Alex3(0),其中s(y 2)= s 1ϵ(y 2)= t and t and s 0ϵ(y 2)=∅。
大卫·约斯特(David Yost)居住在八个国家和十个城市中。这包括在洛杉矶特罗贝大学,澳大利亚国立大学,柏林自由大学,埃斯特雷普拉拉大学,沙特国王大学和巴拉拉特大学/联邦大学的全职工作。他曾获得伊丽莎白二世女王奖学金,洪堡奖学金和莱斯特·福特奖。他的领导职务包括三年的副校长,在Feduni的信息学和应用优化中心的代理主任两年,以及奥斯特姆斯年度会议的一度董事。他的大部分研究都在Banach的空间中,但近年来,他专注于组合几何形状。他还涉足C* - 代数,近似理论,有限的尺寸凸度和优化。
许多一般相对论中的许多经典定理都基于基础Lorentzian时空的局部几何形状结合。这些局部约束通常具有曲率平衡(如ricci张量)和通过爱因斯坦方程(Einstein方程)的下限形式,它们被解释为能量条件。这样的条件是无效的条件,需要在零向量方向上ricci张量无负。The null energy condition plays a crucial role in the Penrose Singularity Theorem about in- completeness of null geodesics [ Pen65 ] which forshadowed the existence of black holes and in Hawking's Area Monotonicity Theorem [ Haw72 ] which as- serts that the area of cross-sections of a black hole horizon is non-decreasing towards the future provided the horizon is future null complete.在本文中,我们介绍了沿未来指导的未来指导的测量无效的无效凸出的熵凸度的零兹歧管的零能量条件的表征。