。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月27日。 https://doi.org/10.1101/2023.12.20.572522 doi:Biorxiv Preprint
摘要 创伤性脑损伤 (TBI) 是一种毁灭性的事件,目前治疗方法有限。干细胞移植可通过不同的机制恢复功能,例如通过分化进行细胞替换、刺激血管生成和支持微环境。成人毛囊凸起衍生干细胞 (HFBSC) 具有神经元分化能力,易于采集且相对免疫特权,这使它们成为自体干细胞治疗的潜在候选者。在本研究中,我们应用体内多模态、光学和磁共振成像技术来研究小鼠 TBI 模型中小鼠 HFBSC 的行为。HFBSC 表达 Luc2 和 copGFP,并在体外检查其分化能力。随后,在受伤 2 天后,将预装了 ferumoxytol 的转导 HFBSC 移植到裸鼠的 TBI 病变(皮质区域)旁边。移植后 58 天将大脑固定以进行免疫组织化学检测。表达 Luc2 和 copGFP、载有 ferumoxytol 的 HFBSC 在体外表现出足够的神经元分化潜能。受损大脑的生物发光显示 HFBSC 存活,磁共振成像确定了它们在移植区域的定位。免疫组织化学显示移植细胞染色为巢蛋白和神经丝蛋白 (NF-Pan)。细胞还表达层粘连蛋白和纤连蛋白,但未检测到细胞外基质团块。58 天后,可以在脑组织切片中的 HFBSC 中检测到 ferumoxytol。这些结果表明 HFBSC 能够在脑移植后存活,并表明细胞可能向神经元细胞谱系分化,这支持了它们在 TBI 细胞治疗中的潜在用途。
光盘利用激光在光盘表面蚀刻出凸起(凹坑)。然后另一束激光能够读取这些凹坑以及与未蚀刻数据位相对应的凸起,并将它们读取为二进制字符串。凹坑为 0,凸起为 1。它们是一种非常便宜、轻便的数据存储方式,但容易因刮擦而损坏。它们的存储容量也有限,CD 最多可存储 800 MB,蓝光最多可存储 50 GB。另一个缺点是需要专门的硬件来读取和写入光盘,而且大多数光盘无法重写。云存储云存储是一种云计算模型,其中数据存储在通过互联网或“云”访问的远程服务器上。
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
目前,人们对全球气候变化深感忧虑,同时,世界各地的人们也开始意识到减少温室气体排放的必要性。这引起了人们对潮汐能等替代能源发电的关注。潮汐能是一种可持续能源,它是由月球和太阳对地球的引力与地球和月球相互旋转产生的离心力相互作用,导致海洋包层周期性变化而产生的 [1]。由于它们各自的质量和与地球的距离,产生的潮汐力大小约为太阳的 32% 和月球的 68%。这表明月球对地球施加的引力大于太阳的引力。由于地球和月球之间的距离较小,月球对地球的引力大约是太阳的 2.125 倍 [2]。由于引力的作用,地球靠近月球的一侧产生的水量较大。同时,由于地月系统自转产生的离心力,又产生了一个水凸起,但这里的水凸起是在地球离月球最远的一侧产生的。现在由于地球周围的两种力而产生了一个合成凸起,如图 1 和图 2 所示。
通过实验室、风洞和飞行测试研究了充气机翼的性能。研究了三种翼型,一种是充气式刚性机翼,一种是充气式聚氨酯机翼,一种是带聚氨酯囊的织物机翼约束装置。本研究开发和使用的充气机翼具有独特的外翼型轮廓。翼型表面由一系列弦向“凸起”组成。凸起或“表面扰动”对机翼性能的影响令人担忧,并通过烟线流动可视化进行了研究。进行了空气动力学测量和预测,以确定机翼在不同弦向雷诺数和攻角下的性能。研究发现,充气式挡板会将湍流引入自由流边界层,从而延迟分离并提高性能。
在量子混沌系统中,光谱形式(SFF)定义为两级光谱相关函数的傅立叶变换,已知遵循随机矩阵理论(RMT),即“坡道”,其次是“坡道”,其次是“高原”。最近,与所谓的“ bump”相距的通用早期偏差被证明是在随机量子电路中作为多体量子系统的玩具模型存在的。我们证明了SFF中的“凹凸障碍 - 高原”行为,用于许多范式和频道驱动的1D冷原子模型:无旋转和Spin-1/2 Bose-Hubbard模型,以及与触点或二色相互作用的不可融合的Spin-1凝结物。我们发现,与晶格大小相比,多体时间的缩放量 - rmt的发作和凸起振幅的变化对原子数的变化更为敏感,而不管超级结构,对称性类别,或者选择驱动方案的选择如何。此外,与1D光学晶格中相互作用的玻色子相比,在旋转气体中,原子数中的缩放和凸起幅度的增加的速度明显慢,这表明了位置的作用。我们获得了SFF的通用缩放函数,该功能暗示了量子混乱的冷原子系统中凸起政权的幂律行为,并提出了一种干涉测量方案。
目前,CRISPR/Cas9 系统已广泛应用于各类生物和细胞的基因组编辑。1,2 遗憾的是,它还会在与靶序列相似的非靶位点引起不必要的突变。3 非靶突变是由 CRISPR/Cas9 RNPs 对 DNA 序列的非特异性识别引起的。4 已证明,除了最佳 PAM 序列 5-NGG-3 之外,Cas9 还可以切割具有 5-NAG-3 或 5-NGA-3′PAM 的位点,尽管效率较低。5 此外,20 nt 的单向导 RNA(sgRNA)可以识别与 sgRNA 存在多达 3 - 5 个碱基对错配的 DNA 序列,这表明在人类基因组中特定核酸酶的可能结合位点多达数千个。 3 此外,CRISPR/Cas9 可以诱导与 RNA 引导链相比含有一些额外碱基(“ DNA 凸起”)或一些缺失碱基(“ RNA 凸起”)的 DNA 序列进行非靶向切割。6 非靶向 DNA 切割可导致