大型 LCD 显示屏,带蓝色背光,适合在黑暗区域使用 一键轮流显示 CO 2 /露点温度/湿球温度/空气温度/湿度。采用 NDIR(非色散红外)波导技术 CO 2 传感器设计 可编程警告 CO2 水平 CO 2 传感器长时间漂移补偿 声音警报(~80db)阈值设置 包括最大、最小、平均功能 每 2 秒迷你 USB 输出到 PC 进行分析 99 点手动记录 30000 点自动记录 回顾 99 点手动记录 保持功能冻结当前读数 外壳设计周围有导轨,有助于空气通风,从而快速准确地做出反应 易于在 380-420ppm 左右的新鲜空气中手动校准
表 4 显示,通过扩大孔径来恢复通风质量流量不足以确保相同的冷却性能。实际上,FPR 的降低会导致通风喷射速度降低,从而导致传热系数值降低。确保大致相同的冷却效果的唯一方法是借助动态铲斗恢复一些动态压力。但这种突出到风扇流中的装置是不可接受的,因为它会对发动机比油耗 (SFC) 产生太大的影响。有必要重新设计进气口形状以优化其性能,同时考虑到诸如尽量减少其对声学表面的影响和应力影响等约束。目前,优化的斜简单孔(与表 3 中所示的进气口形状相比更平滑的进气口形状)被视为一种可接受的折衷方案。
新的48V技术已在电动机系统中标准化,以减少电动汽车的排放(EV)。它取代了传统的12V系统,用于提供额外的高压电池以满足增加的功率要求。除了电动机和电池组动力总成外,48V系统还具有其他直接操作(例如供暖和空调应用)的优势。这项技术增加了功能能力,可用于较重的负载,例如启动时空调和催化转换器。因此,这刺激了适合48V配置的本地DC-DC转换器和被动组件(包括电容器和电感器)的进步。这样的发展可能导致该技术在完全电池电力系统中广泛采用,从而促进了电池组的400或800 V输出到48 V的转换,以在整个车辆中分发。
聚醚醚酮 (PEEK) 可直接打印成高性能部件。[1–5] 然而,仍有大量材料难以适应 3D 打印。例如,热固化的热固性材料(如环氧树脂和有机硅)因其机械性能、耐化学性和热稳定性的结合而广泛应用于许多应用中。[6] 然而,这些聚合物通常是双部分系统,必须混合,然后需要几分钟到几小时才能交联并完全固化。这些热固性材料会长时间保持液态,因此很难进行高保真度的 3D 打印,因为它们会流动并且不会保持其预期的几何形状。基于挤出的直接油墨书写 (DIW) 已经成功打印了环氧树脂和有机硅等热固性材料,但通常需要修改油墨成分和流变性以使其具有触变性,或使已经具有触变性,以允许在空气中打印。 [7,8] 此外,DIW 面临着与相关熔融沉积成型 (FDM) 类型方法相同的几何约束,例如悬垂结构和独立结构如果不使用支撑材料则难以打印。这些对可用于 3D 打印的材料和几何形状的限制严重限制了使用慢固化液体预聚物和软材料制造部件的复杂性。自由形式可逆嵌入 (FRE) 3D 打印是一种最近开发的技术,用于打印软质和液体材料并克服了这些挑战。[9] FRE 和相关的嵌入式 3D 打印技术首次由 Feinberg 和 Angelini 团队于 2015 年在不同的论文中描述,涉及将预聚物挤压到具有屈服应力的微凝胶基支撑浴中。 [10,11] 与将细丝挤出到平台上的典型 FDM 方法不同,在 FRE 中,所选材料(通常称为墨水)直接挤出到支撑槽中并固定到位,直到固化。支撑槽还大大减少了重力的影响,并且通常不需要任何额外的打印支撑结构。尽管有这些优势,但 FRE 工艺仍然存在独特的挑战
8 MAC 分析 该系统的一个主要应用是能够比较和更新有限元模型 (FEM)。为此,可以通过通用文件格式数据传输将所有测量点的完整光谱数据文件导出到实验模态分析程序,在该程序中可以根据测量的传递函数计算出模态参数(固有模态形状、特征频率和模态阻尼)。在本例中,使用了 TechPassion 的模态分析程序 VMAP。它提供 Polytec 二进制文件格式的本地导入,而无需事先转换为通用文件格式。在 [5, 6] 中可以找到类似的示例。可以将模态形状和特征频率与从模拟计算出的值进行比较,并且可以将模态阻尼添加到 FEM。现在可以将 FEM 调整到真实结构,并可以使用 VMAP FE 模型更新工具得出改进的模型。
通过扩大孔径来提高通风质量流量不足以确保等效的冷却性能。实际上,FPR 的降低会导致通风射流速度降低,从而导致传热系数值降低。确保大致相同冷却效果的唯一方法是通过动态铲斗恢复一些动态压力。但是这种突出到风扇流中的装置是不可接受的,因为它会对发动机比油耗 (SFC) 产生太大影响。有必要重新设计进气口形状以优化其性能,同时考虑到诸如最小化其对声学表面的足迹影响和应力影响等约束。目前,优化的斜简单孔(与表3 中所示的进气口形状相比,进气口形状更加平滑)被视为可接受的折衷方案。
TZID 定位器的功能核心是其 CPU(见下图)。机械和气动组件仅具有次要功能。输入信号(设定点)和位置(实际值)通过 A/D 转换器输入到处理器。根据控制偏差和 PD 控制算法计算输出信号。信号通过 D/A 转换器输出到 I/P 模块,用于 I/P 模块的模拟调制。I/P 模块提供 3/3 通阀的气动模拟调节。用于向执行器填充空气或从执行器抽出空气的阀门风管的横截面积与调节成比例变化。连续信号调制在精确快速控制直至达到设定点以及适应不同尺寸和不同供应压力的执行器方面可产生最佳效果。
Burckhardt Compression 的 Laby®-GI 压缩机系统在液化天然气 (LNG) 运输船的燃料供应中发挥着重要作用。在运输过程中,液化气体会升温,导致少量蒸发,形成蒸发气体,然后重新液化并送回油箱或用作运输船发动机的燃料。液化系统和柴油发动机都需要高达 300 bar 的压力。这就是为什么 Burckhardt Compression 为 LNG 应用开发了特定的解决方案,这些解决方案可在低温高压下压缩气体,并满足公海使用的严格要求。Burckhardt Compression 系统的独特卖点是密封的曲轴箱,可防止甲烷逸出到大气中。报告期内,已安装的 Laby®- GI 系统首次实现 150 万小时运行时间,体现出其高可靠性。
GroundsOpsStaff 是一个完整的软件包,它融合了 APPA 在广受欢迎的 APPA 书籍《场地管理操作指南》中开发的概念。该软件包括五个 APPA 注意级别、六个标准场地面积矩阵、用于多种测量单位的场地库存数据的工作表等等。GroundsOpsStaff 执行《操作指南》出版物中的所有计算,生成用于确定人员配备和预算需求的报告,并将报告导出到 Excel、Word 或 PowerPoint。此外,还可以配置本地变量以满足您的本地条件。您可以创建 14 个本地场地面积矩阵来满足您的本地情况。非常感谢 Hunter Consulting and Training 的 Ernest Hunter 为 GroundsOpsStajf 和 CleanOpsStaff 提供的软件开发和技术支持。了解更多信息并订购软件包,请访问 urww.appa.org/bookstore。