随着我国碳政策的推进,以风电、太阳能为主的可再生能源比重不断提高,给电力系统备用带来更大挑战。由于我国电力系统的复杂性,采用分区备用的方法保证系统稳定运行难度很大。现有的备用计算结果中,机组备用会受到电网安全约束的制约,导致系统运行风险。为了在不突破安全约束的情况下高效获取机组备用,本文提出了一种可供工程实施的有效备用计算方法。该方法进一步利用箱式稳健优化算法进行安全约束机组组合,保证可再生能源的消纳,确保电力系统的稳定性和备用效率。此外,安全约束经济调度采用数据驱动的稳健随机优化算法,优化电力系统的经济性。该多阶段稳健优化模型具有良好的可扩展性,符合我国电力系统备用调度的进程。基于中国某省实际运行数据和IEEE 300节点系统的仿真分析,验证了所提模型和理论的正确性和可行性。
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统(称为 Bone's Trajectory)。回顾性分析了 21 名老年骨质疏松患者术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和估计的 L3-5 POF。记录优化轨迹的最高 BMD 和最高 POF,并将其与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,平均椎体 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 的两侧,优化轨迹的 BMD 和 POF 明显高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 至少比 AO 轨迹螺钉增加 2.0 倍。结论 新型 AI 模型在选择 BMD 和 POF 高于 AO 标准轨迹的优化椎弓根轨迹方面表现良好。
目的 本研究旨在评估一种新型人工智能 (AI) 模型在骨质疏松患者中识别具有更高骨矿物质密度 (BMD) 和更高拉出力 (POF) 的优化椎弓根螺钉轨迹的能力。方法 使用 3D 图形搜索和基于 AI 的有限元分析模型开发了一种创新的椎弓根螺钉轨迹规划系统,称为骨轨迹。回顾性分析了 21 名老年骨质疏松患者的术前 CT 扫描。AI 模型自动计算替代椎弓根轨迹的数量、轨迹 BMD 和 L3-5 的估计 POF。记录优化轨迹的最高 BMD 和最高 POF,并与 AO 标准轨迹进行比较。结果 患者平均年龄为 69.6 ± 7.8 岁,椎体平均 BMD 为 55.9 ± 17.1 mg/ml。在 L3–5 两侧,优化轨迹的 BMD 和 POF 均显著高于 AO 标准轨迹(p < 0.05)。平均而言,优化轨迹螺钉的 POF 与 AO 轨迹螺钉相比至少增加了 2.0 倍。结论 新型 AI 模型在选择比 AO 标准轨迹具有更高 BMD 和 POF 的优化椎弓根轨迹方面表现良好。
全球环境问题(如全球变暖和化石燃料枯竭)是严重的问题。风力发电作为解决这些问题的方案已在世界范围内受到重视[1]。然而,风力发电机的输出会由于风速变化而频繁且迅速地波动。在拥有大规模风电场 (WF) 的电力系统中,频率和电压等电能质量可能会下降[2–5]。为了避免这种情况,电力公司发布了与 WF 功率波动相关的技术要求。为了缓解功率波动,人们使用了储能系统 (ESS)(如电池或飞轮 [6–8]),如图 1 所示。ESS 的主要问题之一是如何设计控制系统以降低成本。为此,需要一种控制算法来降低 ESS 的额定功率(额定能量容量),因为吸收 WF 输出短期分量的 ESS 的成本主要由额定功率决定。虽然 ESS 的成本也取决于额定能量容量,但它受到 ESS 额定功率(通过所谓的 C 速率)的制约 [9]。此外,虽然 ESS 的充电/放电损耗会影响成本,但尚未详细讨论该问题。已经报道了一些降低额定功率(额定能量容量)的 ESS 控制方法。一阶低通滤波器(FLF)通常用于 ESS 控制系统中,通过消除短期分量来减轻 WF 输出的波动。