量子密钥分发 (QKD) 的目的是使两方(Alice 和 Bob)能够在共享量子信道时生成密钥。例如,在 Ekert [ 1 ] 提出的实现中,信道由一个产生纠缠粒子的源组成,这些粒子被分发给 Alice 和 Bob。在每一轮中,Alice 和 Bob 各自从几种测量设置中选择一个来测量一个粒子。通过推断(从 Alice 和 Bob 的测量结果中)源发射接近于纯二分纠缠态的状态,可以保证 Alice 的测量结果是安全的,即任何可能控制量子信道的第三方(Eve)都不知道。这同时确保了如果 Bob 选择适当的测量设置,Bob 的结果与 Alice 的结果相关,即 Alice 和 Bob 的测量结果可以形成密钥。
对称信息完整测量 (SIC) 是希尔伯特空间中优雅、著名且广泛使用的离散结构。我们引入了一个由多个 SIC 复合而成的更复杂的离散结构。SIC 复合结构定义为 d 维希尔伯特空间中的 d 3 个向量的集合,可以以两种不同的方式划分:划分为 d 个 SIC 和 d 2 个正交基。虽然当 d > 2 时,它们的存在似乎不太可能,但我们意外地发现了 d = 4 的明确构造。值得注意的是,这种 SIC 复合结构与相互无偏基具有密切的关系,正如通过量子态鉴别所揭示的那样。除了基本考虑之外,我们利用这些奇特的属性来构建量子密钥分发协议,并分析其在一般窃听攻击下的安全性。我们表明,SIC 复合结构能够在存在足够大的错误的情况下生成安全密钥,从而阻止六态协议的推广成功。
● 不歧视:马里兰州卫生部遵守适用的联邦和州民权法,禁止基于种族、肤色、宗教或信仰、性别、年龄、血统或国籍、婚姻状况、身体或精神残疾、性取向和性别认同、基因信息、社会经济地位和/或任何其他受保护身份的歧视。马里兰州卫生部禁止基于个人对疫苗功效、寿命、副作用减少的医学知识和/或经验或与接种 COVID-19 疫苗相关的任何其他特征而排除和优待/不利于上述受保护类别中的任何个人。个人的受保护身份与个人接种的疫苗类型无关。
其风险敏感性以及由超过正常压力造成的损害程度。尽管每个工厂都有各自的问题,但似乎有些问题在不同程度上是共同的。现代炼油厂中最薄弱和最易受攻击的区域或部分是单元控制室、开关室、主变电站、发电厂、将大型炼油设备的结构框架固定到地基的螺栓、液压和控制管线、固定管道和电线的支撑框架以及水冷设备的结构类型。原料和产品储存的类型和位置也是问题。许多事故与终端区域有关。
尽管需求减少归因于许多因素:能源效率,改变能源需求模式和分布式太阳能光伏发电,但我们发现需求减少与辐照度曲线密切相关。由于减少需求的时间范围很短,我们的分析滚动窗口为一年,我们提出了以下假设:由于加速采用了分布式太阳能光伏系统,我们看到需求减少。但是,仅净计量太阳能光伏系统并不能说明还原的幅度。我们目前正在完善我们的计算,以估计非NET计量分布式太阳能光伏生成。
量子密钥分发可以提供能够抵御量子计算机破译的安全密钥。连续变量版本的量子密钥分发具有在大都市地区密钥速率更高以及可以使用可在室温下工作的标准电信元件的优势。然而,这些系统的传输距离(与离散变量系统相比)目前有限,并且被认为不适合长距离分发。在此,我们报告了通过适当控制过剩噪声和采用高效协调程序在 202.81 公里超低损耗光纤上进行长距离连续变量量子密钥分发的实验结果。这种破纪录的连续变量量子密钥分发的实现使之前的距离记录翻了一番,并指明了使用室温标准电信元件进行长距离和大规模安全量子密钥分发的道路。
研究人员推测,量子点还为实现其他量子互联网应用提供了巨大的前景,例如量子中继器、分布式量子传感,因为它们允许固有存储量子信息并可以发射光子簇状态。这项研究的成果强调了将半导体单光子源无缝集成到现实的、大规模和高容量量子通信网络中的可行性。
1 Will Kenton,“什么是二级市场?其运作方式和定价”,Investopedia,2024 年 10 月 2 日,https://www.investopedia.com/terms/s/secondarymarket.asp。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
