摘要 构建可用的量子计算机的关键在于构建可扩展、可延伸且提供实时响应的经典控制硬件流水线。该流水线的控制处理器部分提供在高级量子编程语言和使用任意波形发生器的低级脉冲生成之间进行映射的功能。在本文中,我们讨论了设计替代方案,重点是支持具有 O(10 2)量子比特的中型量子设备。我们介绍了一种评估量子 ISA 编码量子电路的有效性的方法。我们使用这种方法来评估几个设计点:类 RISC、向量和类 VLIW。我们提出了两种对广泛使用的开放 RISC-V ISA 的量子扩展。鉴于量子硬件流水线的变化速度很快,我们的开源实现为设计空间实验提供了一个良好的起点,同时我们的指标可以独立用于指导设计决策。
被电磁场捕获的电子和离子长期以来一直是重要的高精度计量仪器,最近也被提议作为量子信息处理的平台。这里我们指出,由于这些系统具有极高的荷质比以及低噪声量子读出和控制,因此它们还可用作高灵敏度的带电粒子探测器。特别是,这些系统可用于检测比典型电离尺度低许多数量级的能量沉积。为了说明,我们提出了一些粒子物理学中的应用。我们概述了一种无损飞行时间测量方法,该方法能够对缓慢移动的准直粒子进行亚 eV 能量分辨率测量。我们还表明,目前的设备可用于对环境暗物质粒子携带小电毫电荷≪ e 的模型提供具有竞争力的灵敏度。我们的计算可能还有助于表征来自带电粒子背景的量子计算机噪声。
通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
HIV-1 是全球面临的重大健康挑战。开发有效的疫苗和治疗方法是当务之急。开发针对蛋白质特定表位的抗体反应的疫苗已显示出良好的前景,但 HIV-1 的遗传多样性阻碍了这一进展。提供有效和广谱中和 HIV-1 感染的治疗策略非常可取。方法:我们研究了纳米工程 CD4+ T 细胞膜包覆纳米颗粒 (TNP) 包覆 DIABLO/SMAC 模拟物 LCL-161 或 AT-406(也称为 SM-406 或 Debio 1143)的潜力,既可以中和 HIV-1,也可以选择性地杀死 HIV-1 感染的静息 CD4+ T 细胞和巨噬细胞。结果:载有 DIABLO/SMAC 模拟物的 TNP 表现出卓越的中和广度和效力,并通过自噬依赖性细胞凋亡选择性杀死 HIV-1 感染细胞,同时不会对旁观者细胞产生药物诱导的脱靶或细胞毒性作用。对自噬早期阶段的基因抑制会消除这种影响。结论:载有 DIABLO/SMAC 模拟物的 TNP 有可能用作治疗剂来中和无细胞 HIV-1 并特异性地杀死 HIV-1 感染细胞,作为 HIV-1 治愈策略的一部分。
摘要:外延和晶圆键合系统界面的研究借鉴了材料科学、电气工程和机械工程,涉及先进的材料表征技术。低温晶圆键合已被用来生产各种各样的材料组合,最显著的是绝缘体上硅结构。然而,对外延和键合界面的修改会影响这些界面上的电或热传输。在本演讲中,我们提供了几个半导体和金属基系统的例子,以解决研究和修改不同、技术上重要的界面组合作为处理(如退火)的功能的能力。材料组合范围从 Si|Si 和 Si|Ge 到宽带隙材料组合,包括 GaN|Si 到 b-Ga 2 O 3 | SiC 以及金属|金属热压键合。我们的主要目标是能够研究和设计界面以优化属性并最终优化设备性能。这些研究是 MURI 项目“利用新的理论范式增强宽带隙电力电子中的界面热传输”的一部分。
随着新生量子处理单元中量子比特数量的增加,第一代实验中使用连接式 RF(射频)模拟电路变得极其复杂。物理尺寸、成本和电气故障率都成为控制系统可扩展性的限制因素。我们开发了一系列紧凑型 RF 混频板来应对这一挑战,通过在具有 EMI(电磁干扰)屏蔽的 40 mm × 80 mm 4 层 PCB(印刷电路板)上集成 I/Q 正交混频、IF(中频)/LO(本振)/RF 功率电平调整和 DC(直流)偏置微调。RF 混频模块设计用于 2.5 至 8.5 GHz 之间的 RF 和 LO 频率。测得的典型镜像抑制和相邻信道隔离分别为 ∼ 27 dBc 和 ∼ 50 dB。通过在环回测试中扫描驱动相位,模块短期幅度和相位线性度通常测量为 5 × 10 − 4 (V pp /V mean ) 和 1 × 10 − 3 弧度 (pk-pk)。通过将 RF 混合板集成到超导量子处理器的室温控制系统中并执行单量子比特门和双量子比特门的随机基准测试表征,验证了 RF 混合板的运行。我们测量了单量子比特过程不保真度为 9 . 3 ( 3 ) × 10 − 4 和双量子比特过程不保真度为 2 . 7 ( 1 ) × 10 − 2 。
生长素诱导降解 (AID) 系统已成为一种强大的工具,可有条件地消耗多种生物体和细胞类型的蛋白质。在这里,我们描述了一种工具包,用于增强秀丽隐杆线虫中 AID 系统的使用。我们已经生成了一组单拷贝、组织特异性(生殖系、肠道、神经元、肌肉、咽喉、皮下组织、接缝细胞、锚细胞)和全体细胞 TIR1 表达菌株,这些菌株携带共表达的蓝色荧光报告基因,以便在实验中使用红色和绿色通道。这些转基因被插入常用的、特征明确的基因座中。我们证实,我们的 TIR1 表达菌株对几种核和细胞质 AID 标记的内源性底物产生了预期的消耗表型。我们还构建了一组质粒,用于构建修复模板,以通过 CRISPR/Cas9 介导的基因组编辑生成荧光蛋白::AID 融合。这些质粒与秀丽隐杆线虫群体中常用的基因组编辑方法(Gibson 或 SapTrap 组装质粒修复模板或 PCR 衍生的线性修复模板)兼容。这些试剂将共同补充现有的 TIR1 菌株,并促进快速和高通量的基因荧光蛋白::AID 标记。这组新的 TIR1 表达菌株和模块化、高效的克隆载体可作为直接组装 CRISPR/Cas9 修复模板的平台,用于条件性蛋白质消耗。
结果 共招募了 79 名患者;第 1a 部分招募 19 名,第 1b 部分招募 8 名,第 2 部分招募 52 名。未报告剂量限制性毒性,根据安全性、耐受性、药代动力学参数和临床活性,确定推荐剂量为每 2 周 15 mg/kg。最常见的治疗相关不良事件 (TRAE) 是疲劳 (17.7%)、恶心 (11.4%) 和干眼症 (10.1%)。3 级 TRAE 包括恶心 (2 名患者) 和贫血、中性粒细胞减少、AST 升高、碱性磷酸酶升高、呕吐和输液反应 (各 1 名患者)。在 28 名患者中,有 3 名 (10.7%) 报告了可逆性的 2 级角膜 TRAE,该组剂量为每 2 周 1 次,共 70 天。未报告 4 级以上 TRAE。28 名 FGFR2b 过表达 GEA 患者中,5 名(17.9%;95% CI,6.1% 至 36.9%)确认有部分缓解。