摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
该项目来自Google(https://adafru.it/icg),使用笔记本电脑的内置相机来识别各种谷物和棉花糖。然后根据您训练的模型对计算机进行分类。电路游乐场快车(http://adafru.it/3333)与计算机进行通信,以决定何时通过微伺服器对哪种棉花糖/谷物进行分类。
无分类器指导(CFG)已广泛用于文本到图像扩散模型中,其中引入了CFG量表以控制整个图像空间的文本指导强度。但是,我们认为全球CFG量表会导致空间不一致,这是不同的脱节优势和次优的图像质量。为了解决这个问题,我们提出了一种新颖的方法,即语义意识的无分类器指导(S-CFG),以自定义文本到图像扩散模型中不同语义单元的指导学位。具体来说,我们首先设计了一种训练 - 免费的语义分割方法,将潜在图像分配到每个Denoising步骤中相对独立的语义区域。尤其是,将U-NET主链中的跨意义图被重新归一化,以将每个贴片分配给相应的令牌,而自我注意力图则用于完成语义区域。然后,为了平衡各种语义单元的扩增,我们会自适应地调整各个不同区域的CFG尺度,以将文本指导学度重新确定为统一水平。最后,广泛的实验证明了S-CFG优于原始CFG策略在各种文本到图像扩散模型上的优越性,而无需任何额外的培训成本。我们的代码可在https://github.com/smilesdzgk/s-cfg上找到。
摘要。现实世界图像超分辨率(RISR)旨在从退化的低分辨率(LR)输入中重新结构高分辨率(HR)图像,以应对诸如模糊,噪声和压缩工件之类的挑战。与传统的超分辨率(SR)不同,该方法通过合成的下采样来典型地生成LR图像,而RISR则是现实世界中降级的复杂性。为了有效地应对RISR的复杂挑战,我们适应了无分类器指导(CFG),这是一种最初用于多级图像生成的技术。我们提出的方法,真实的SRGD(带有无分类器引导扩散的现实世界图像超分辨率),将RISR挑战分解为三个不同的子任务:盲图恢复(BIR),常规SR和RISR本身。然后,我们训练针对这些子任务量身定制的类别条件SR扩散模型,并使用CFG来增强现实世界中的超分辨率效果。我们的经验结果表明,实际SRGD超过了定量指标和定性评估中的现有最新方法,如用户研究所证明的那样。此外,我们的方法在
TAGEDP *辐射肿瘤学系,大学医学中心,弗莱堡大学医学院,德国弗莱堡大学,德国弗莱堡大学; Y德国癌症联盟(DKTK),合作伙伴网站Freiburg,德国弗莱堡; Z Berta-Ottragme,德国弗莱堡大学医学学院,德国; X比利时大学医院辐射肿瘤学系;比利时Ku Leuven肿瘤学系; ║加利福尼亚大学洛杉矶分校的辐射肿瘤学和泌尿外科系; {凯斯西部储备大学UH Seidman癌症中心辐射肿瘤学系; #伊利诺伊州芝加哥西北芬伯格医学院泌尿外科系; **德国汉堡汉堡大学医院泌尿外科泌尿外科的马丁尼克前列腺癌中心; ZZ土耳其伊斯坦布尔KOC大学医院泌尿外科系; XX XX辐射肿瘤学系,多伦多大学梅蒂医学院和辐射医学计划,玛格丽特癌症中心公主,大学卫生网络。加拿大多伦多; ║║辐射肿瘤学系,古斯塔夫·鲁西(Gustave Roussy),法国维勒维夫(Vilejuif),巴黎 - 萨克莱大学(Paris-Saclay University)Inserm,Inserm incostat U1018; {{华盛顿特区Medstar Georgetown大学医院放射医学系; ##德国弗莱堡大学医学院大学医学中心外科病理学研究所,德国弗莱堡; ***堪萨斯大学堪萨斯大学癌症中心辐射肿瘤学系,加拿大多伦多; ║║辐射肿瘤学系,古斯塔夫·鲁西(Gustave Roussy),法国维勒维夫(Vilejuif),巴黎 - 萨克莱大学(Paris-Saclay University)Inserm,Inserm incostat U1018; {{华盛顿特区Medstar Georgetown大学医院放射医学系; ##德国弗莱堡大学医学院大学医学中心外科病理学研究所,德国弗莱堡; ***堪萨斯大学堪萨斯大学癌症中心辐射肿瘤学系,
摘要:在信息和通信技术的时代,确保形象安全已成为面对网络威胁,未经授权的访问和篡改的优先事项和关注。传统技术提供了一定程度的安全性,但实际上缺乏处理图像异常的能力,因此提出机器学习技术并改善支持向量机(SVM)分类器的挑战。本研究通过使用加密和特征提取系统来提高分类器,以增强图像中的数据安全性,该系统依赖于较高的混沌权重来图像的特定部分。所提出的方法将图像的尺寸降低到截面,从那里从图像的实际维度降低。在混淆和扩散的两个主要阶段创造复杂的随机性方面,改进的分类器的准确性更高。实验结果证明了分类器在熵= 8方面的有效性,并且是有效的值,直方图均匀性,异常检测和加密复杂性。这些结果在许多领域提供了可靠且可扩展的解决方案,例如医疗保健,经济学和社交媒体信息传播。可以通过将所提出的方法与保护图像数据的其他方法相结合来提供全面的方法。关键字:支持向量机,图像,加密1。引言在我们当前的时间以及互联网和通信技术的发展中,图像是互联网上最重要的交流形式之一。因此,传统加密算法的挑战和建议出现了。图像用于许多设施,例如安全性,社交通信,医疗领域和通信。因此,由于其广泛的蔓延,对未经授权的人使用数据的使用引起了安全问题。图像通常包含敏感数据,并且必须保留,尤其是在当前广泛的网络攻击中[1]。尽管具有有效性,但网络攻击的加速已成为每个人的痴迷,并且需要挑战,以找到与快速技术发展保持同步的新的和先进的方法。近年来,随着技术和通信的发展以及社交网站和云存储的传播,在网络攻击和数据安全的框架内,暴露于攻击已成为所有军事,财务,经济和其他专业的优先事项[2]。图像是攻击最脆弱的数据,因为它们具有高容量,强大的互连和像素之间的重复。全世界当前正在寻求的目标是数据安全性,最有效的方法之一是加密,这只能使数据不可读取,只能由能够检索它的授权人员。由于先前的研究中提到了许多加密方法,因此加密成为挑战的主题。
在细胞的监督分类中优化特征提取和分类器的组合组合Xhoena polisi duro 1,2*,Arban UKA 2,Griselda alushllari 2,Albana Ndreu Halili 3,Dimitrios A. Karras A. Karras A. Karras 2,Nihal Engin vrana vrana 4 1 Informatics obs s. noli oblia,“ fan nori”,koria,koria,koria,korica,korica,korica,korka,korka,“ korcua”。 xpolisi@epoka.edu.al(X.P.D.)。2埃波卡大学计算机工程系,阿尔巴尼亚蒂拉纳市; auka@epoka.edu.al(a.u.)galushllari@epoka.edu.al(G.A。)dkarras@epoka.edu.al(d.a.k.)3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。) 4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.) 摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。 可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。 这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。 这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。 本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。 1。 简介3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。)4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.)摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。1。简介分析了三种细胞类型(A549,BALB 3T3和THP1)的Brightfield显微镜图像,以评估Inception V3,Squeeze Net和VGG16架构与分类器与包括KNN,决策树,随机森林,Adaboost,Adaboost,Neural Networks和Natan bayes的分类器配对的影响的影响。使用信息增益降低维度,以提高计算效率和准确性。使用不同参数的Butterworth过滤器用于平衡图像特征和降噪的增强,从而在某些情况下提高了分类性能。实验结果表明,与神经网络配对时,VGG16体系结构可实现通过不同指标衡量的更高分类精度。与未经过滤的数据集相比,使用Butterworth过滤器时的精度提高了,并且各种Butterworth滤波器之间的差异表明了优化这些类型图像的过滤器参数的重要性。关键字:生物材料风险评估,细胞图像分类,分类器,特征提取,个性化医学,监督分类。
基于脑电图 (EEG) 的脑机接口 (BCI) 通常被认为是针对运动障碍用户的有前途的辅助技术,但由于在现实生活中的可靠性低,在实验室外仍很少使用。因此,需要设计可供最终用户(例如严重运动障碍者)在实验室外使用的长期可靠的 BCI。因此,我们提出并评估了一种基于多类心理任务 (MT) 的 BCI 设计,用于为 CYBATHLON BCI 系列 2019 的四肢瘫痪用户进行纵向训练(3 个月内 20 次训练)。在本次 BCI 锦标赛中,四肢瘫痪的飞行员在赛车游戏中用精神驾驶虚拟汽车。我们旨在将渐进式用户 MT-BCI 训练与基于自适应黎曼分类器的新设计的机器学习流程相结合,该分类器已被证明有望在现实生活中应用。我们遵循两步训练过程:前 11 个课程用于训练用户通过执行两个认知任务(休息和心理减法)或两个运动想象任务(左手和右手)来控制 2 类 MT-BCI。第二个训练步骤(剩余 9 个课程)应用了自适应、独立于会话的黎曼分类器,该分类器结合了之前使用的所有 4 个 MT 类别。此外,由于我们的黎曼分类器以无监督的方式逐步更新,因此它将捕获会话内和会话之间的非平稳性。实验证据证实了这种方法的有效性。也就是说,与初始课程相比,训练结束时的分类准确率提高了约 30%。我们还研究了这种性能改进的神经相关性。使用新提出的 BCI 用户学习指标,我们可以显示我们的用户学会了通过产生越来越匹配 BCI 分类器训练数据分布的 EEG 信号来改善他的 BCI 控制,而不是通过改善他的 EEG 类别辨别。然而,由此产生的改进只对同步(基于提示)BCI 有效,并没有转化为 CYBATHLON BCI 游戏性能的提高。为了克服这个问题
在训练中,该工具对结果进行分类的准确率为 85%,而在使用新数据的最终测试中,该工具对哪些参与者患精神病的风险较高进行预测的准确率为 73%。根据结果,该团队认为,为被确定为临床高风险的人提供脑部 MRI 扫描可能有助于预测未来精神病的发病率。
控制门 RY (0 . 49 π ) 所需的辅助量子位,q 5 是用于对数据进行幅度编码的 1 量子位寄存器,q 6 是编码标签的量子位。在 IBM 量子处理器 ibmq 16 melbourne 上运行该算法可提供 1024 次采样来对量子位 q 0 进行采样。获得的 P (1) 估计为 ˆ P = 490 / 1024 ≃ 0 . 48,则分配给 x = (0 . 884 , 0 . 468) 的标签为 y = − 1,正如预期的那样。尽管在此测试中分类正确,但与模拟器 ibm qasm simulator 的结果进行比较表明,所考虑的量子机过于嘈杂,无法通过算法 1 进行良好的分类。模拟器的输出统计数据提供 ˆ P = 273 / 1024 ≃ 0 . 27 。此结果与未分类数据向量 x 接近训练向量之间的中间点的事实一致。使用相同的训练点和新的未标记实例 x = (0 . 951 , 0 . 309)(其正确分类为 y = 1)重复实验,量子机失败。事实上 ibmq 16 melbourne 返回相对频率 ˆ P = 338 / 1024 ≃ 0 . 38 ,因此它将 x 归类为 y = − 1 。在同一个测试中,模拟器 ibm qasm simulator 返回 ˆ P = 244 / 1024 ≃ 0 . 24 正确分类。观察到的分类准确性不足取决于所考虑的量子处理器的低量子体积 1(QV = 8)。未来工作的内容可能是在更大、更可靠的硬件上进行测试(例如,具有 27 个量子比特和 QV=128 的 IBM 量子机器 ibmq montreal)。所提出的量子分类器的指数加速归因于在对数时间内有效准备量子态以及在恒定时间内执行分类本身(这取决于所需的准确性)。事实上,选择 QRAM 是出于对总体时间复杂度的明确估计,但允许使用其他有效的初始化来运行此量子分类器。