摘要 - 分组交换和电路交换这两种技术之间的对抗由来已久,而且在可预见的将来似乎不会停止。使用美国两个具有重要社会意义的领域的例子来讨论这个问题:紧急服务和国防信息系统,以及微电子领域(片上网络)。概述了在紧急服务领域尝试切换到分组交换的不成功历史。国防信息系统领域向分组交换过渡的类似失败已经发生,即:ISDN技术被保留在政府国防红色交换网络中,混合ATM技术被保留在JWICS情报和AFSCN卫星控制信息网络中; JRSS 安全堆栈程序在 NIPRNet 和 SIPRNet 电子邮件网络上失败;由于 F-35 闪电 II 飞机软件中的网络漏洞,联合攻击战斗机计划已暂停。仅使用开源。
随着全球数据流量的增加和现代通信协议的使用,以及远程终端计算和数据存储能力的提高,现在人们通常将远程 AWS 和中央控制和数据采集计算机视为广域网 (WAN) 的节点。数据或控制消息根据规则(协议)分为“数据包”,如 X.25 或更快的帧中继。每个数据包都通过电信提供商的交换数据网络路由,并可能通过不同的路由到达目的地。当实时数据(如实时音频和视频)必须快速传输并以发送的顺序到达时,电路交换是理想的选择。对于可以承受传输中短暂延迟的数据,分组交换更高效、更可靠。消息成本与连接时间和数据量有关。
第一节从国际视角阐述了地理信息系统。在市政层面,Bernhardsen 和 Tveitdal 表明数字地图具有积极的成本效益。Brand 关注的是大量数据(约 20 GB),他介绍了为北爱尔兰开发集成数据库的情况。用户需求已经确定,该项目目前正处于对专有地理信息系统进行基准测试的阶段。Nag 说明了在印度可以进行哪些类型的机构间合作,IRS-1 遥感卫星为他们提供了比大多数西方国家更好的空间技术。Wiggins 等人使用 ARC/INFO 作为 CORINE 项目的基础 GIS。该项目旨在整合整个欧洲经济共同体的环境信息,并在开发站点之间实现高效的数据传输。网络在 Green 和 Rhind 的论文中也占有重要地位,他们详细介绍了 ARC/INFO 的自驱动教程界面的存在,学者可以使用计算机网络(如英国联合学术网络 (JANET) 和英国电信的分组交换流 (PSS))远程访问该界面。
快速傅里叶变换 (FFT) 广泛应用于各种信号处理算法,这些算法通常需要高吞吐量和可配置的 FFT 大小。本应用说明展示了 Xilinx ® Versal™ AI Core 设备中 AI 引擎阵列上的高效 FFT 实现。所提出的架构利用 AI 引擎阵列的分组交换功能,将 4096 个输入样本分发到四个 AI 引擎,在其中执行 512 点或 1024 点 FFT,然后使用另一个 AI 引擎根据控制字对 2048 点和 4096 点 FFT 的数据进行后处理,该控制字逐块指定 FFT 大小和 FFT/IFFT 模式。仿真结果证实,5x2 AI 引擎阵列中的两个 FFT 模块实现了 3.7 GSPS 的吞吐量,足以服务于 24-32 个 100 MHz 带宽的天线。
简历 台积电欧洲总裁 Maria Marced 女士是台积电欧洲总裁,负责推动台积电在欧洲的业务发展、战略和管理。在加入台积电之前,Maria 曾担任恩智浦半导体/飞利浦半导体的高级副总裁兼销售和营销总经理。Maria 加入飞利浦半导体,担任联网多媒体解决方案业务部高级副总裁兼总经理,负责监督飞利浦联网消费者应用的半导体解决方案。加入飞利浦之前,Maria 曾在英特尔工作,在那里她的职业生涯发展了 19 年多,最终担任英特尔欧洲、中东和非洲地区副总裁兼总经理。Maria 在西班牙马德里理工大学完成学业后,曾在多家公司担任开发工程师,其中包括 Electrooptica Juan de la Cierva,她在那里率先使用了微处理器;以及 Telefonica,她曾参与过一个分组交换项目,这是当今互联网的雏形。Maria 是 Ceva Inc. 的非执行董事会成员,也是 GSA(全球半导体协会)欧洲、中东和非洲地区领导委员会主席。Maria 出生于西班牙瓦伦西亚,已婚,育有一女。
简历 台积电欧洲总裁 Maria Marced 女士是台积电欧洲总裁,负责推动台积电在欧洲的业务发展、战略和管理。在加入台积电之前,Maria 曾担任恩智浦半导体/飞利浦半导体的高级副总裁兼销售和营销总经理。Maria 加入飞利浦半导体,担任联网多媒体解决方案业务部高级副总裁兼总经理,负责监督飞利浦联网消费者应用的半导体解决方案。加入飞利浦之前,Maria 曾在英特尔工作,在那里她的职业生涯发展了 19 年多,最终担任英特尔欧洲、中东和非洲地区副总裁兼总经理。Maria 在西班牙马德里理工大学完成学业后,曾在多家公司担任开发工程师,其中包括 Electrooptica Juan de la Cierva,她在那里率先使用了微处理器;以及 Telefonica,她曾参与过一个分组交换项目,这是当今互联网的雏形。Maria 是 Ceva Inc. 的非执行董事会成员,也是 GSA(全球半导体协会)欧洲、中东和非洲地区领导委员会主席。Maria 出生于西班牙瓦伦西亚,已婚,育有一女。
教学大纲 第一单元:通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置。 第二单元:卫星子系统:高度和轨道控制系统、TT&C 子系统、高度控制子系统、电源系统、通信子系统、卫星天线设备。 卫星链路:基本传输理论、系统噪声温度和 G/T 比、基本链路分析、干扰分析、指定 C/N 的卫星链路设计(有和没有频率重用)、链路预算。第三单元:传播效应:介绍、大气吸收、云衰减、对流层和电离层闪烁和低角度衰落、雨致衰减、雨致交叉极化干扰。多址:频分多址 (FDMA)、互调、C/N 计算。时分多址 (TDMA)、帧结构、突发结构、卫星交换 TDMA 机载处理、需求分配多址 (DAMA) – 需求分配类型、特性、CDMA 扩频传输和接收第四单元:地面站技术:发射机、接收机、天线、跟踪系统、地面接口、功率测试方法、低轨道考虑。卫星导航和全球定位系统:无线电和卫星导航、GPS 定位原理、GPS 接收机、GPS C/A 码精度、差分 GPS。 UNIT-V:卫星分组通信:通过 FDMA 传输消息:M/G/1 队列、通过 TDMA 传输消息、纯 ALOHA-卫星分组交换、时隙 Aloha、分组预留、树算法。教科书:
NASA 的跟踪和数据中继卫星系统 (TDRSS) 地面终端将于 2015 年更换。自 1994 年上次大规模整修以来,现有终端已进行过多次小规模升级和改造。地面终端与七颗运行中的地球同步通信中继卫星一起,为 20 多个客户航天器提供支持,包括 Terra、哈勃太空望远镜、国际空间站等。终端更换工作称为空间网络地面段支持 (SGSS),它将使地面终端通信基础设施现代化,并为客户提供新功能。本文介绍了新的架构、一些重大技术升级和运营概念,这些概念将使 TDRSS 能够以更低的成本为更多客户提供更多服务。SGSS 将提供灵活、可扩展、可升级和可持续的地面段,它将:1) 维护现有的空间网络 (SN) 功能和接口;2) 适应新客户和功能,包括更高的数据速率支持和额外的调制和编码方案;3) 减少维护地面终端所需的工作量;4) 在不中断服务的情况下将运营从现有系统过渡到 SGSS;5) 实现 99.99% 的客户服务运营可用性。SGSS 将通过以下方式实现这一目标:1) 使用最先进的技术实施架构,实现低影响的增量升级;2) 简化增加地面和空间资产的扩展过程;3) 在很大程度上纳入商用现货 (COTS) 产品;4) 最大限度地提高设备通用性。一些新的和增强的 SGSS 功能包括:1) 能够轻松添加新的发送和接收波形; 2) 早期信号数字化,实现无损信号分发;3) 高速数字分组交换;4) 新型编码方案,包括低密度奇偶校验 (LDPC) 和 Turbo 乘积码 (TPC);5) Ka 波段单向跟踪服务;6) 指令数据速率提高到 50Mbps,遥测数据速率提高到 1.2 Gbps。
1969 年 10 月 3 日,两台相距遥远的计算机首次通过互联网“对话”。两台计算机(一台位于加州大学洛杉矶分校,另一台位于斯坦福研究所)通过 350 英里的租用电话线连接,尝试传输最简单的信息:单词“login”每次传输一个字母。“L”和“O”传输完美。当传输“G”时,斯坦福研究所的计算机崩溃了。尽管崩溃了,但一个主要障碍已被清除,两台计算机实际上已成功传输了一条有意义的信息,即使不是计划中的信息;加州大学洛杉矶分校的计算机以其自己的语音方式向斯坦福研究所的计算机说“你好”。第一个创新的计算机网络(尽管很小)现已投入运行。几乎可以肯定地说,互联网是二十世纪五大发明之一,与电视、飞机、原子能和太空探索齐名。然而,与上述几项发明不同,互联网并非起源于十九世纪。直到 1940 年,即使是像儒勒·凡尔纳那样的想象力也无法预见到,物理学家和心理学家在第二次世界大战中的合作,会在三十年后引发一场新的通信革命。即使是 AT&T、IBM、通用电气等顶级实验室,在面临一组可以通过复杂的线路同时通话的计算机时,也只能想象出一种依靠中央办公室交换方法通过一条电话线进行计算机间通信的机制。更进一步的设想来自其他一些机构和公司,最重要的是,在这些机构和公司工作的个人。虽然人们可以将 1969 年 10 月的传输视为一个开端,但对于之前几十年从事通信和人工智能工作的研究人员来说,这是一个有着悠久而复杂根源的事件。本文将从二战语音通信实验室的起源追溯这些开端,并试图证明一些天才人物的概念飞跃以及他们的辛勤工作和生产技能如何使得我们每天收到的电子邮件成为可能。虽然很难确定像发明这样模糊的东西,但第一个网络并不难识别。洛杉矶的计算机通过一个称为 ARPANET 的微型分组交换网络向斯坦福的计算机说“你好”,ARPANET 以美国国防部高级研究计划局的名字命名。博尔特·贝拉内克和纽曼是 ARPANET 的创建者,并管理了 20 年,他们认为 ARPANET 的成功有以下几个因素:靠近两所知名大学、只聘用最优秀的人才以及美国政府在人造卫星问世后大力支持研究的政策。1948 年,理查德·博尔特、罗伯特·纽曼和我和我在麻省理工学院的支持下,成立了声学咨询公司 Bolt Beranek and Newman (BBN),当时是一家合伙企业。当时我们并不知道,我们为互联网的发展奠定了基础,互联网的诞生需要三个概念创新——人机系统或共生、分时和分组交换。在接下来的十五年里,BBN 将汇集能够构想这三个概念并使其发挥作用的人才。回想起来,对于不懂计算机的非专业人士来说,这三个概念中最能引起共鸣的似乎是“人机共生”,这是一个开创性的概念,主要由 JCR Licklider 阐述。他设想使用当时在主要行业中很常见的大型计算机