单细胞分析软件提供了可立即追踪的克隆性证据图。DispenCell 的单细胞分配装置配有传感尖端,可检测细胞的通过。随着每个细胞的前进,会触发独特的电信号。这种独特的电迹会被立即记录下来,让用户在分配细胞后立即检查克隆性证据。全套数据存储在克隆性证据报告中。DispenCell 的技术已获得专利。
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
如图 4b 所示,所提出的结构可以在 3.58 GHz 和 4.75 GHz 处创建两个传输零点。这些传输零点可以在 WPD 设计中抑制更多谐波。所提出的谐振器主要尺寸如下:d4 = 2.4、d5 = 1.4、d6 = 0.5、d7 = 1.2、d8 = 0.9、d9 = 0.1、d10 = 2.8、d11 = 0.11、W3 = 0.1、W5 = 2.1、W6 = 0.1、W7 = 0.1、W8 = 2.6、S3 = 0.1、S4 = 0.3、S5 = 0.2、S6 = 0.2、S7 = 0.2(单位均为毫米)。表 2 列出了所提出的主谐振器的 LC 等效模型的计算值。在 (13) 中计算了设计的主谐振器的 TF。
摘要 — 我们提出了一种新型紧凑型宽带波导 T 结功率分配器,特别适用于毫米波和太赫兹频率。它将基于基板的元件整合到波导结构中,以提供输出端口的隔离和匹配。内部端口引入在基板上形成为 E 探针的 T 结的顶点。这有助于将反射能量从输出端口有效地耦合到与 E 探针集成在同一基板上并通过薄膜技术制造的新型薄膜电阻终端。设计、模拟和制造了适用于 150-220 GHz 频带的功率分配器,以实验验证理论和模拟性能。结果表明,模拟和测量结果具有极好的一致性,对于三端口设备,输入和输出端口的回波损耗显著为 20 dB,输出端口之间的隔离度优于 17 dB。此外,测量的插入损耗小于 0.3 dB,幅度和相位不平衡分别为 0.15 dB 和 0°。此外,分压器对内置吸收负载的电阻材料的尺寸和薄层电阻具有出色的耐受性,使该设备成为毫米波和太赫兹系统(特别是射电天文接收器)非常实用的组件。
在向共同居住的受众传达演示文稿时,我们通常会使用带有文本和2D图形的幻灯片来补充口语叙事。尽管在2D媒体上探索了演示文稿,但增强现实(AR)允许演示设计师在dis-plot的现有物理基础架构中添加数据和增强。这种耦合可以为观众提供更具吸引力的体验并支持理解。使用氢气,我们提出了一种新颖的应用,该应用利用了数据驱动的讲故事的好处,以解释Hy-Drogen分配器可靠性的独特挑战。利用物理道具,位置数据以及虚拟增强和动画,氢气是一种独特的演示工具,尤其对利益相关者,旅游组和VIP至关重要。氢气是与当地氢燃料研究团队进行多种合作设计迭代的产物,并通过对团队成员的访谈以及与最终用户的用户研究进行评估,以评估交互式AR体验的可用性和质量。通过这项工作,我们为AR数据驱动的演示文稿提供了设计注意事项,并讨论了如何将AR用于除传统基于幻灯片的演示外的创新内容。
摘要:压电执行器具有响应速度快、结构紧凑、精度高、产生巨大阻挡力以及操作简便等特点,在先进分配领域中正被迫切地采用,以提高喷射性能并满足微电子封装、胶粘剂键合和小型化行业的精度要求。本研究重点是一种压电驱动的紧凑型流体分配器的基础设计和开发,该分配器利用一级杠杆的原理来放大针头位移,并扩大所开发的喷射分配器的应用领域。利用基本杠杆原理,进行基于几何的建模,以制造一种常闭铰链杠杆式分配器的工作原型。进行了初步实验,以见证所制造的分配器每秒输送 100 个工作流体点的可行性,这将提供一种分配各种流体的新型装置,并且所提出的放大机制也适用于各种其他压电应用。
MS14 设计用于在空气和喷气燃料的爆炸性混合物存在的情况下操作,不会在海拔高度 -1,800 英尺至 50,000 英尺的大气压下引起爆炸或火灾。MS14 不会产生超过 400 F 的表面温度或热量。当设备打开、关闭或操作时,MS14 不会产生足以点燃爆炸性混合物的能量水平的放电。MS14 符合 MIL-STD-810C、方法 511.1 和程序 II 的要求。符合 MIL-STD-202、方法 112D 或 MIL-STD-883、方法 1014.7(如适用)要求且氦气泄漏率不超过 1 x 10-7cc/s 的密封设备不受此要求限制。
MS14 设计用于在空气和喷气燃料的爆炸性混合物存在的情况下运行,不会在海拔高度 -1,800 英尺至 50,000 英尺的大气压下引起爆炸或火灾。MS14 不会产生超过 400 F 的表面温度或热量。 MS14 在打开、关闭或操作设备时不会产生足以点燃爆炸性混合物的能量水平的放电。MS14 符合 MIL-STD-810C、方法 511.1 和程序 II 的要求。符合 MIL-STD-202、方法 112D 或 MIL-STD-883、方法 1014.7(如适用)要求且氦气泄漏率不超过 1 x 10-7cc/s 的密封设备不受此要求限制。
MS14 设计用于在空气和喷气燃料的爆炸性混合物存在的情况下操作,不会在海拔高度 -1,800 英尺至 50,000 英尺的大气压下引起爆炸或火灾。MS14 不会产生超过 400 F 的表面温度或热量。当设备打开、关闭或操作时,MS14 不会产生足以点燃爆炸性混合物的能量水平的放电。MS14 符合 MIL-STD-810C、方法 511.1 和程序 II 的要求。符合 MIL-STD-202、方法 112D 或 MIL-STD-883、方法 1014.7(如适用)要求且氦气泄漏率不超过 1 x 10-7cc/s 的密封设备不受此要求限制。
