摘要 — 本文在重离子辐照下测试了商用可编程片上系统(PSoC 5,来自赛普拉斯半导体公司),重点测试了系统的模数接口模块。为此,将数据采集系统 (DAS) 编程到被测设备中,并使用设计多样性冗余技术进行保护。该技术通过使用两种不同架构的转换器(一个转换器和两个逐次逼近寄存器 (SAR) 转换器)以不同的采样率运行,实现了不同级别的多样性(架构和时间)。实验在真空室中进行,使用能量为 36 MeV 且足以穿透硅的 16 O 离子束在活性区域产生 5.5 MeV/mg/cm 2 的有效线性能量传输 (LET)。平均通量约为 350 粒子/秒/cm 2,持续 246 分钟。评估了每个转换器对单粒子效应的个体敏感性,以及整个系统截面。结果表明,所提出的技术可有效缓解源自转换器的错误,因为使用分集冗余技术可纠正 100% 的此类错误。结果还表明,系统的处理单元容易挂起,可以使用看门狗技术来缓解。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
摘要 — 在基站具有多个天线的多用户系统中,下行链路广播信道中的预编码技术允许用户以非合作方式检测各自的数据。矢量扰动预编码 (VPP) 是发射侧信道反转的非线性变体,它扰动用户数据以实现完全分集阶。虽然很有前景,但众所周知,在 VPP 中找到最佳扰动是一个 NP 难题,需要基站进行大量计算支持,并限制了该方法在小型 MIMO 系统中的可行性。这项工作为下行链路 VPP 问题提出了一种完全不同的处理架构,该架构基于量子退火 (QA),以使 VPP 适用于大型 MIMO 系统。我们的设计将 VPP 简化为适合 QA 的二次多项式形式,然后细化问题系数以减轻 QA 硬件噪声的不利影响。我们在各种设计和机器参数设置下,在真实的量子退火设备上评估了我们提出的基于 QA 的 VPP (QAVP) 技术。使用现有硬件,对于使用 64 QAM 调制、32 dB SNR 的 6 × 6 MIMO 系统,QAVP 可以在 100 µ s 的计算时间内实现 10 − 4 的 BER。索引术语 — 矢量扰动、下行链路预编码、量子计算、量子退火、优化
GKP 码在连续变量 (CV) 量子系统的位移相空间梳中编码量子比特,可用于校正各种高权重光子误差。在这里,我们提出了单模 CV GKP 码的原子集合类似物,通过使用量子中心极限定理将 CV 系统的相空间结构拉回到量子自旋系统的紧凑相空间。我们使用分集组合方法计算通道保真度,研究了这些代码在由随机松弛和各向同性弹道失相过程描述的误差通道下的最佳恢复性能。我们发现自旋 GKP 码优于其他自旋系统代码,例如 cat 码或二项式码。我们的基于双轴反扭曲相互作用和 SU(2) 相干态叠加的自旋 GKP 码是有限能量 CV GKP 码的直接自旋类似物,而我们基于单轴扭曲的代码尚未有经过充分研究的 CV 类似物。提出了一种自旋 GKP 码的状态准备方案,该方案使用幺正方法的线性组合,适用于 CV 和自旋 GKP 设置。最后,我们讨论了用于自旋 GKP 编码量子比特的量子计算的容错近似门集,该门集是通过使用量子中心极限定理从 CV GKP 设置转换门而获得的。
摘要 天线阵列已有一百多年的悠久历史,并且与电子信息技术的发展紧密相关,在无线通信和雷达中发挥着不可或缺的作用。随着电子信息技术的飞速发展,全时间、全域、全空间网络服务需求呈爆发式增长,对天/空/地各类平台提出了新的通信需求。为满足未来第六代(6G)无线通信对大容量、广覆盖、低时延、强鲁棒性等日益增长的要求,在天/空/地通信网络中采用不同类型的天线阵列(如相控阵、数字阵列、可重构智能面等)和各种波束成形技术(如模拟波束成形、数字波束成形、混合波束成形、无源波束成形等)将有望带来可观的天线增益、复用增益和分集增益等优势。然而,为天/空/地通信网络启用天线阵列提出了特定、独特和棘手的挑战,这引起了广泛的研究关注。本文旨在概述天线阵列启用的空间/空/地通信和网络领域。首先介绍天线阵列启用的空间/空/地通信和网络的技术潜力和挑战。随后,讨论天线阵列的结构和设计。然后,我们讨论天线阵列促进的各种新兴技术,以满足天/空/地通信系统的新通信要求。在这些新兴技术的推动下,空间通信、机载通信和地面通信具有不同的特点、挑战和解决方案。
摘要 — 天线阵列已有一百多年的悠久历史,伴随电子信息技术的发展而不断演进,在无线通信、雷达等系统中发挥着不可或缺的作用。随着电子信息技术的快速发展,全时间、全域、全空间网络服务需求爆发式增长,对天/空/地各类平台提出了新的通信需求。为了满足未来第六代(6G)无线通信对高容量、广覆盖、低延迟和强鲁棒性等日益增长的需求,在天/空/地通信网络中采用不同类型的天线阵列(例如,相控阵、数字阵列和可重构智能表面等)和各种波束成形技术(例如,模拟波束成形、数字波束成形、混合波束成形和无源波束成形等)具有可观的天线增益、复用增益和分集增益等优势。然而,为天/空/地通信网络启用天线阵列提出了特定、独特和棘手的挑战,引起了广泛的研究关注。本文旨在概述天线阵列使能的空间/空/地通信和网络领域。首先介绍天线阵列支持的空间/空中/地面通信和网络的技术潜力和挑战。随后讨论天线阵列结构和设计。然后,我们讨论了天线阵列推动的各种新兴技术,以满足空间/空中/地面通信系统的新通信要求。在这些新兴技术的支持下,空间通信、机载通信和地面通信具有独特的特点、挑战和解决方案
摘要 — 射频识别 (RFID) 是一种快速发展的无线通信技术,用于电子识别、定位和跟踪产品、资产和人员。RFID 已成为构建实时定位系统 (RTLS) 的主要手段之一,该系统使用简单、廉价的标签(附在或嵌入物体中)和读取器(接收来自这些标签的无线信号以确定其位置)实时跟踪和识别物体的位置。大多数 RFID 标签定位技术严重依赖于对读取器和标签之间距离的精确估计。传统上,距离信息是从接收信号强度指示 (RSSI) 获得的。这种方法不准确,特别是在复杂的传播环境中。到达相位差 (PDOA) 的最新发展允许相干信号处理以提高距离估计性能。利用多个频率可以进一步提高范围估计性能。在本文中,我们重点研究基于多频的技术,以实现无源或半无源 RFID 标签范围估计的几个重要优势。使用精心设计的多个频率可以实现有效的相位上卷和消除 PDOA 方法中可能遇到的范围模糊问题。在复杂的传播环境中,当信号在某些频率上高度衰落时,基于多频的技术可提供频率分集以实现稳健的范围估计。这些优势不仅可以提高各种应用中 RFID 标签的范围估计精度,还可以在具有挑战性的场景中实现稳健的范围估计。
1. 理解蜂窝通信概念 2. 研究移动无线电传播 3. 研究无线网络不同类型的 MAC 协议 UNIT -I 蜂窝概念-系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、提高蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。第四单元均衡和分集:介绍、均衡基础知识、训练通用自适应均衡器、通信接收器中的均衡器、线性均衡器、非线性均衡器
ROVER 能力简介 A2Q ISR 创新中校 Chuck Menza Charles.menza@pentagon.af.mil Rover@pentagon.af.mil 703.693.3980 免责声明:本简报/演示仅供参考,美国政府不承诺以任何方式或意图出售、租借、租赁、共同开发或共同生产国防物品或服务。 战时创新:4 天测试 - 4 周投入战斗 ROVER 项目描述/概述:什么:ROVER 通过机载、移动、固定或便携式终端从机载平台向地面用户提供全动态视频 (FMV)。如何:机载平台将包含 FMV 的信号传输给地面用户,地面用户使用连接到显示器(笔记本电脑或模拟设备)的多波段 ROVER 接收器来观看视频和/或遥测。原因:提供实时信息,使人员能够从视频中瞄准目标、请求近距离空中支援、指挥机组人员调整瞄准以将炸弹投掷到目标上、提供灵活性、捕获/记录视频、提供飞机位置/坐标以供定位等... 当今用途:互操作性(非详尽):Predator Liberty Litening Pod P3 Swift Pointer Tern AC-130 Shadow Pioneer Scathe View Raven Dragon Eye Fire Scout SNIPER Pod Mako/Tigershark Scan Eagle Hunter Strike Killer Team 什么是 ROVER? • 遥控视频增强接收器 – 空军负责接收全动态视频 (FMV) • ROVER 使用来自各种机载平台的视距视频下行链路 – 无人机系统 (UAS) 和高级瞄准吊舱 (ATP) – 载人平台 – 未加密和加密 – 模拟和数字 – 双向和 IP(即将推出) 由 ISR 创新办公室 (A2Q) 和 Big Safari - QRC 管理 ROVER 是什么 – 不是什么? • 不是记录程序 • Spiral 开发了 8 年 – 来自客户的反馈 – 来自“Big Vision”人员的意见 • 未通过 JROC • 或 JCIDS • 未通过 JTIC 认证 • 不确定是否通过 JTRS 认证 • AOR 中请求最多的功能 • JTACS 喜欢它 第一辆 ROVER II:一个相当有趣的故事:02 年 1 月 17 日,CW2 Chris Manuel(陆军绿色贝雷帽)突然造访 645 AESG。他说,他过去三个月一直在阿富汗的山洞里搜寻,休息了两周,然后又回来继续搜寻。他说,他的部队迫切需要获得捕食者的视频,以便他们“看到下一座山后面的情况”,以免将他的手下置于危险之中。关键人员集合完毕,与承包商讨论了需求,当天就在 Big Safari 办公室制定了解决方案。八天后(2002 年 1 月 23 日),解决方案(如上图所示)在 El Mirage 的捕食者测试设施进行了演示。CW2 Manual 被部署回阿富汗,将 ROVER 投入使用。ROVER 多次因拯救其部队的生命和协助杀死或俘虏敌方战斗人员而受到赞誉。影响 ROVER 设计的因素:兼容性 — 跨服务 ROVER 系列 -使用 DHS Tac ROVER 和 ROVER 4 传输网 ROVER - Net-T ROVER5 和 6 C2 ROVER 加密 — 类型 1 所有 ROVER 都有各种 -AES 加密级别 -TDES 大小重量 **互操作性挑战** 美国军方和执法机构在情报、监视和侦察 (ISR) 能力方面传统上分道扬镳。然而,对可以弥合这一差距的互操作解决方案的需求日益增长。 **从灾难中吸取的教训** 最近的灾难,如 9/11、卡特里娜飓风、加州野火、海地地震和漏油事件,凸显了 ISR 能力在应急情况下的重要性。 **L-3 通信公司的 ROVER 系统** 远程操作视频增强接收器 (ROVER) 系统通过向地面部队提供实时视频源,彻底改变了地面战争。该系统自 2004 年推出以来,已经历了多次升级,最新版本的 ROVER 6 配备了五波段收发器,加密功能也得到了改进。**VORTEX 系统** 视频定向交换收发器 (VORTEX) 系统是 L-3 Communications 开发的另一个先进的 ISR 平台。该系统配备了五波段收发器,并已通过固定翼飞机等多个平台的使用认证。**ROVER 6 功能** ROVER 6 系统拥有改进的加密功能、定向天线和空间/频率分集。它还支持多种波形,包括 CDL、战术和模拟。**战术 ROVER SIR v2.0** 战术 ROVER 系统的最新版本具有与 SIR 2.0 相同的功能,但加密功能得到改进,并配备了 Ku 波段下变频器天线。该系统目前正在生产中,并已交付给客户。总体而言,这些系统表明 L-3 Communications 致力于开发先进的 ISR 平台,以满足军事和执法机构不断变化的需求。C2 ROVER 是一款紧凑、功能强大的多用途无线电,已签订合同并交付了 8 台原型机。它具有两个独立的双向链路、全链路互连,并支持各种频段,包括 C/L/S/Ku/UHF。该无线电还包括使用 Type 1-1/AES/TDES 标准的加密功能。ROVER 元数据使用密钥长度值 (KLV) 格式进行标准化,该格式由运动图像标准委员会 (MISB) 控制。该无线电支持通过链路传输 KLV 元数据,并已提供此功能。未来的升级将包括对光标在目标 (CoT) 元数据的支持。ROVER 还具有使用时间数字加密标准 (TDES) 或高级加密标准 (AES) 的数字加密解决方案,最终计划使用 NSA Type 1 标准。该电台的 IP 网络功能使用 Net-T 软件,提供全双工、基于 IP 的网络节点,可用作 RIPN。ROVER 还将支持模拟和战术波形,包括 CDL、战术、VNW、模拟、BE-CDL 和 DDL 数据速率。无线电的工作温度范围为 -20°C 至 +70°C(带冷板),重量约为 10 磅。未来的更新包括增加 Tac ROVER-e“套件”,该套件将配备 SIR v2.5 套件组件,包括无线电、操作手册、多波段战术天线、电缆组、电源和 Vuzix 战术显示器。此外,文本还描述了 Tac ROVER-e 套件的拟议电缆组,其中包括各种连接器、电池和飞线。还概述了初步连接器布局,具有 10 针键填充卡口和“Mighty Mouse”(BNC)视频输出端口。最后,SWaP(尺寸、重量和功率)比较显示了 SIR v2.5 Tactical ROVER-e 的尺寸估计值及其与其他无线电的估计尺寸比较。SIR v2.5 Tactical ROVER-e SWaP 比较重量:- SIR v2.5:约 1.9 磅 - 带电池的 Tactical ROVER-e:约 2.3 磅重量增加的原因:- COMSEC 模块 - 额外的连接器和空间来容纳它 - 增加体积以容纳组件 - 隔离墙