保护农业(CA)被广泛推广为基于农业生态学的土壤保护方法。几项研究集中在撒哈拉以南非洲的CA对农作物产量和土壤水分动态的影响上,对CA对土壤有机碳(SOC)和相关分数的影响的关注有限。我们收集了马拉维以北的Mzimba区的30个配对农场的代表性土壤样品,以确定耕作和土壤深度对土壤物理化学特性,总SOC和有机碳分数的影响。未受干扰的土壤核心进行批量密度测量。使用土壤分馏方法确定不同的SOC池,而土壤物理化学分析是使用障碍土壤样品的标准实验室方法进行的。土壤有机碳含量的范围为CA图的0.4-1.8%。这显着大于在常规耕种图下测得的0.4-1.5%的SOC含量。耕作类型和土壤深度对SOC具有显着的相互作用。例如,在0-10 cm的深度与CA图下的10-30 cm相比,在0-10 cm的深度下测量了较大的SOC含量。土壤深度对大多数土壤特性具有显着影响。示例包括重颗粒有机物 - 碳(POM-C)馏分,矿物相关有机物 - 碳(MAOM-C),MAOM级分的氮和氮中的氮。在0-10 cm的土壤深度中,它们比10-30 cm的土壤深度大。但是,相比之下,耕作类型仅对较重的POM-C和MAOM-C级分有显着影响,而POM-C和MAOM-C级分比CA的大于常规耕地。保护农业显示出改善SOC及其相关分数的能力,这是针对理解土地管理对碳存储的影响的发现。
抽象的新型药物输送系统是一种新型药物输送的方法,可解决传统药物输送系统的局限性。我国拥有阿育吠陀的庞大知识基础,其潜力仅在近年来才实现。然而,用于对患者进行草药的药物输送系统是传统且过时的,导致药物疗效降低。如果新型药物输送技术是在草药中应用的,则可能有助于提高功效并降低各种草药化合物和草药的副作用。这是将新型药物输送方法纳入草药中的基本思想。因此,重要的是将新颖的药物输送系统和印度阿育吠陀药物整合起来以对抗更严重的疾病。关键字:微球,受控释放,新型药物输送,草药药物。简介草药配方是具有各种优势的新型药物输送系统之一,包括增加药物溶解度,提高溶解速率,生物利用度等。本文的目的是检查微球对草药治疗某些疾病的影响。草药制剂是一种剂型,其中各种草药的掺入用于诊断,治疗和减轻各种生活方式疾病的指定数量中。自然健康的秘密是基于阿育吠陀定律和植物医学的标准化,这些植物医学在大论文中得到了很好的证明。谁也指出,不适当使用草药制剂是通过对草药进行治疗(例如提取,蒸馏,表达,分馏,纯化,浓度或发酵)进行处理来制备的。这些植物医学是在最卫生的条件下处理的,并以各种形式使用,例如片剂,胶囊和口服液体,这些液体被分配为以真空密封包装的不同数量。在传统知识系统中,在现代医学时代之前的各个社会中多代的草药。现在,开发生物医学系统的一天会鼓励使用与各种副作用相关的现代药物,并且各种合成药物的升级成本也是对传统医学系统的重新兴趣的原因。
抽象的肾脏肥大的特征是细胞大小和蛋白质含量的增加,并具有最小的增生。尚未确定控制这种细胞生长模式的机制。目前的研究检查了由BSC-1肾上皮细胞(GI)阐述的生长抑制剂(GI)是否具有与转化生长因子 /3(TGF-FI)几乎相同的生物学特性,可以将有丝分裂的刺激转化为在原始培养的兔肾管近端细胞中的绩效刺激。胰岛素(10,ug/ml)加上氢化可的松(50 nm)增加了每个细胞的蛋白质量,细胞体积和[3Hjthymidine掺入这些细胞中的24和48小时。gi/tgf-f8(10个单位/ml)导致[3H〜-胸苷incorporation的最小刺激。与胰岛素加材料可添加在一起时,GI/TGF-J8抑制了这些有丝分裂剂对[3H]胸苷掺入的刺激作用,但并未阻止细胞和细胞体积I.e。蛋白质的增加,细胞受到了肥大。这种模式持续了48小时,表明GI/TGF-/3对有丝分裂刺激的DNA合成产生了延长的抑制作用,而不是延迟其发作。对Amiloride敏感的Na+摄取(指示Na+/H+止痛活性)与每个细胞和细胞体积的蛋白质相关,而不是与DNA合成。这些研究表明,对细胞大小的控制可能是由阐述生长抑制因子介导的自分泌机制来调节的,这些抑制因子改变了生长对有丝分裂剂的模式。p60从近端管状细胞携带的条件培养基的凝胶色谱分馏产生了抑制的馏分[BSC-1细胞中的3Hjthymidine掺入和CCL 64细胞;这些细胞系和色谱行为的相对抑制活性与GI/TGF-FI观察到的相似。
摘要。虽然各种与根相关的真菌可以促进土壤碳(C)储存,因此有助于缓解气候变化,但到目前为止,该地区的研究基本上集中在菌根真菌上,并且在很大程度上对其他真菌的潜在影响和机制却在很大程度上尚不清楚。在这里,为了识别可以引入农作物以促进c固次的新生物体,我们评估了12种根相关的非杂菌真菌的土壤C储存潜力(跨越了九个属(跨越九个属)(跨越了九个属,并根据特征与土壤中的特征相互链接,从宽池中选择,并基于土壤中的菌方和菌方和cressial and-sedgial and-sedgial cungial cungial cungial cungial undigual。我们种植了与单个分离株接种的小麦植物,允许连续13 C标记。收获后,我们通过测量不同的Origin(植物与土壤)的池以及长期的土壤孵化和大小/密度分馏的不同稳定性来量化C的储存电位。我们在一项平行的体外研究中评估了植物和微生物群落的反应以及真菌的物理学和形态学特征。虽然与12个分离物中的3种接种导致总土壤C显着增加,但在大多数分离株的接种下,土壤C稳定性提高了 - 由于抗C池的增加以及不稳定的池和不稳定的C的减少,土壤C的稳定性和呼吸量的降低。进一步的土壤C稳定性在包括各种植物的植物中呈阳性,包括各种植物的生长,包括较高的植物繁殖体,该植物的繁殖体积较大,繁殖体系的繁殖体系,这些繁殖体系的含量更大,繁殖量较高多种直接和间接的机制,用于对土壤C存储的真菌影响。我们发现,与真菌治疗下的物理限制相比,对微生物分解的代谢抑制更多。我们的研究提供了在植物 - 土壤系统中的第一个直接实验证据,这些证据与特定的非菌根接种
keji beling(Strobilanthes crispus)是一种药用植物,传统上用于糖尿病,伤口愈合,利尿剂和便秘治疗。s. crispus叶的功效,因为药物与其中包含的抗氧化剂有关。用于测量抗氧化活性的几种方法是DPPH(2,2-二苯基-1-苯羟基羟基),FRAP(铁还原抗氧化能力)和FTC(硫氰酸酯)。通过这三种方法,可以对抗氧化活性的各个方面进行更全面的评估,以抗击自由基和保护细胞免受氧化损伤的能力。这项研究旨在确定抗氧化活性,并确定一种在一种方法中活跃的分数是否也在另一种方法中也有效,以便可以通过相关的科学领域来开发它。研究始于使用具有变化极性(N-己烷,乙酸乙酯和甲醇)的溶剂进行浸没的分馏。分析了总酚类,类黄酮及其抗氧化活性的每个馏分。结果表明,N-己烷,乙酸乙酯和甲醇级分为6.43。 11.56; 16.13 mggae/g,类黄酮含量为3.75; 7.34;分别为7.19 mgqe/g。使用DPPH方法进行的抗氧化活性测试表明,N-己烷,乙酸乙酯和甲醇馏分具有抗氧化活性,每个IC 50值为731.93; 471.99; 115.69 mg/l。使用FRAP方法的抗氧化活性测试表明,基于66.28的Fe 2+的量,N-己烷,乙酸乙酯和甲醇级分具有抗氧化活性。 138.90; 143.43 mg/l Fe 2+。同时,使用FTC方法进行的抗氧化活性测试表明,N-己烷,乙酸乙酯和甲醇级分具有抗氧化活性,脂肪过氧化的抑制百分比为36.86; 55.76;分别为46.77%。基于获得的数据,可以得出结论,使用DPPH和FRAP方法的Keji Beling(S. crispus)叶片馏分表明,甲醇级分的抗氧化活性高于乙酸乙酯和N-己烷级分。这些结果表明,抗氧化活性与每个馏分的酚含量成正比。同时,使用FTC方法,发现乙酸乙酯的活性高于甲醇和N-己烷级分。这些结果表明,抗氧化活性与每个馏分的类黄酮含量成正比。
原理:间变性甲状腺癌 (ATC) 是一种极具侵袭性的甲状腺癌,在初次诊断时经常表现为局部晚期浸润或远处转移,因此错过了手术干预的最佳窗口。因此,全身化疗和靶向治疗对于改善 ATC 的预后至关重要。然而,ATC 对常规治疗表现出显著的耐药性,这凸显了阐明这种耐药性背后的生物学机制并确定新的治疗靶点以克服它的必要性。方法:我们对来自 ATC 样本的大量和单细胞 RNA 测序 (scRNA-seq) 数据进行了全面分析,以筛选与多药耐药 (MDR) 相关的 m 5 C 修饰相关基因。然后,我们进行了 IC 50 测定、流式细胞术,并使用了 Nsun2 敲除的自发致瘤 ATC 小鼠模型来证明 NSUN2 促进了 ATC 中的 MDR。为了研究 NSUN2 介导的耐药机制,我们生成了 NSUN2 敲除的 ATC 细胞系并进行了转录组学、蛋白质组学和 MeRIP-seq 分析。此外,还进行了 RNA 测序和可变剪接分析以确定 NSUN2 敲除后的整体变化。我们通过糖蛋白染色、变性 IP 泛素化、核质分馏和 PCR 进一步探索了 NSUN2/SRSF6/UAP1 轴的潜在机制。最后,我们在体外和体内评估了小分子 NSUN2 抑制剂与抗癌药物的协同作用。结果:我们的研究结果表明,NSUN2 表达与 ATC 中的 MDR 显着相关。 NSUN2 充当 SRSF6 mRNA 上的 m 5 C 的“写入器”,ALYREF 充当 m 5 C 的“读取器”,从而诱导选择性剪接重编程并将 UAP1 基因的剪接形式从 AGX1 重定向到 AGX2。因此,AGX2 增强了 ABC 转运蛋白的 N 连接糖基化,通过防止泛素化介导的降解来稳定它们。此外,NSUN2 抑制剂可降低 NSUN2 酶活性并减少下游靶标表达,从而为克服 ATC 中的 MDR 提供了一种新颖且有希望的治疗方法。结论:这些发现表明 NSUN2/SRSF6/UAP1 信号轴在 ATC 的 MDR 中起着至关重要的作用,并将 NSUN2 确定为 ATC 化疗和靶向治疗的协同靶点。
墨尔本(澳大利亚) - 2023年11月13日。Telix Pharmaceuticals Limited (ASX: TLX, Telix, the Company) today announces that the first patient has been dosed in the Company's Phase III ProstACT GLOBAL study of its investigational prostate-specific membrane antigen (PSMA) targeting radio-antibody drug conjugate (rADC) therapy, TLX591 ( 177 Lu-rosopatamab tetraxetan).TLX591是由高特异性PSMA靶向抗体,螯合剂接头和细胞毒性lutetium(177 lu)有效载荷组成的RADC。针对PSMA靶向的单克隆抗体(MAB)方法为抗PSMA小分子提供了明显不同的靶向和药理学。Prostact Global(ClinicalTrials.gov ID:NCT04876651)是第一个III期试验,用于评估具有PSMA阳性转移性castrate抗性前列腺癌(MCRPC)的成年患者的TLX591试验,并与标准的CARE,SOC,SOC,SOC,Androgen受体抑制或单独的群群)一起进行。与当前现实世界的Soc集成,将前列腺全球与其他PSMA研究区分开来,并反映了Telix在前列腺癌症护理和对患者预后的承诺方面的持续创新。迄今为止,已在TLX591的八个I和II研究中进行了242例患者,包括Telix的Prostact Select Select研究(ClinicalTrials.gov ID:NCT04786847),这证实了Telix的最佳量子脱位剂量和产品安全性的临床有效性。事先发布的II期(单臂)研究数据报告说,在与多西他赛化学疗法同时给予的分馏剂量方案下交付时,总生存率(OS)和可接受的安全性。41与其他放射性疗法相比,用TLX591施用的患者的集体长期随访尚未观察到由于药剂的肝清除率,因此急性或延迟肾毒性。2来自最近完成的前列腺精选研究3的初步数据3显示了靶标的PSMA肿瘤结合和辐射递送到骨,淋巴结和内脏转移酶,同时最大程度地减少了肾脏,唾液腺,唾液腺和limimi腺的摄取和毒性问题。与小分子诊断和治疗性PSMA剂相比,这种分化的生物分布很重要,因为摄取可能不限于癌组织。选择结果还证实了相隔14天的两剂的简单,简单治疗方案的临床优势,同时证明了177 LU标记的PSMA抗体靶向方法的保留率更长,内部化和潜在的治疗益处。3前列腺全球基于TLX591的上一阶段和II阶段的研究,包括Prostact Select。这是一项跨国,多中心,前瞻性,随机,受控的,开放标签的III期研究,旨在调查和确认与单独使用SOC相比,与与SOC一起管理的TLX591相关的患者利益和风险。Prostact Global的总体入学人数为400名患者,首次剂量在澳大利亚的默多克穆尔多克校园的Genesiscare中心成功施用。
当您选择加入FS时,您会选择发现需要学术卓越的教师中的新事物,而技术创新是一种传统。实际上,FS是在最佳条件下,高等教育以及技术创新和价值化的知识和知识生产的特权场所。FS成立于1997年,旨在培训研究人员的基础和应用科学以及多学科科学专业人员,使他们能够通过满足其需求和需求来进入就业市场。为了实现这些目标,它制定了一项策略,使其成为工业和商业公司的科学平台,而不是忘记其在培训讲法语的基础科学中的中学教师中的作用:数学,物理学,化学,化学和地球科学生物化学。自成立以来,FS在学术和研究层面都经历了大量的发展和增长。fs提供17个学术课程,五个学士学位,十个硕士学位和4个博士学位,所有学士学位都得到了黎巴嫩教育和高等教育部的认可。它已经成功建立了三个多学科研究单位:研究单位:农业食品技术和价值化(UR-TVA),研究部门:环境,功能基因组学和蛋白质组学(UR-EGP)和研究部门:数学和建模(UR-MM)。这三个研究单位(RU)将25名讲师 - 研究人员和十七个研究团队工作的40名候选人组合在一起。值得注意的是,该汽车被农业部认可,用于食品领域的各种分析。通过研究与分析中心(CAR),计量和同位素分馏实验室(LMFI)和黎巴嫩人类组织库(BLTH),它还提供了常规的专业知识和分析。在同一背景下,已经与黎巴嫩行业签订了几份合同,该合同通过LMFI研究人员的专业知识从过去15年中开发的尖端技术中受益匪浅。LMFI是ISO 17025认可的,是整个亚洲领域唯一的实验室。FS也是非政府组织Jouzour Loubnan的所在地。自2012年以来,FS在北黎巴嫩北部校园(CLN),南黎巴嫩校园(CLS)以及Zahle和Beqaa校园(CZB)建立了三个区域分支。CLN和CLS提供数学学士学位,选项:数据科学和生活与地球科学学士学位 - 生物化学,而CZB提供了数学学士学位,选项:数据科学。FS计划已得到认可,并且对黎巴嫩就业市场的需求。因此,我们几乎所有的新毕业生都在毕业后三个月内找到工作。我们的学生受益于FS的世界一流研究实验室的存在,使他们能够参加研究实习,从而加深他们的科学知识并帮助他们探索潜在的职业道路。桥梁存在于FS和其他USJ机构之间,主要是工程和建筑学院以及医学科学学院。学生可以通过竞争性考试或档案审查过程转移到这些机构。这些桥梁旨在支持我们学生在黎巴嫩竞争激烈的学术环境中的学术旅行。fs对外部合作伙伴关系的开放使其能够在国家和国际层面建立合作网络,与当地公司,非政府组织,政府部和市政当局以及与学术机构,尤其是在法国以及美国和加拿大的学术机构。这些网络和合作伙伴关系巩固了我们的学术培训,并大大简化了职业机会的选择以及我们的毕业生融入就业市场。最后,至关重要的是,FS采用了以学生支持和指导为中心的“开放门”策略。在学习期间的任何时候,学生都可以依靠专门的导师和一个细心的行政团队,他们总是可以指导他们学习学术旅程。
摘要糖尿病(DM Endokrinologis)是一种疾病或异常代谢疾病是一组异质性的,其中胰岛素分泌受损会导致高血糖水平(异常沉降)和葡萄糖不耐受。它的特征是异常高血糖(hiperglikemia)。hiperglikemia是一种情况,禁食血糖水平的患者上升到110 mg / dl血糖水平以上,进食后2小时(PP)高于140 mg / dl。发现抗血糖的草药成分是非常必要的,因为糖尿病是世界上最常见的疾病之一。Blumea Balsamifera叶提取物(BBLE)可以降低血糖水平,因为它具有代谢物化合物,可在降低血糖水平中发挥作用。目的是评估乙醇提取物的抗血糖活性和sembung叶片(blumea balsamifera)的各种部分对链霉菌素 - 尼罗替胺诱导的大鼠的抗血糖活性。方法:本研究使用了仅随机测试后对照组。提取使用乙醇进行,然后蒸发。分馏。乙醇提取物,N-己烷级分,乙酸乙酯馏分,水分组和阳性对照能够降低血糖水平,如以下第17天的降低百分比提取物的以下百分比降低,第17天以及75.62天的第24天的降低百分比降低。第17天的N-己烷分数为46.19,在74.22的第24天减少了百分比。乙酸乙酯的分数为51.22,在第82.47天的第24天减少了百分比。持续10天,将30例男性Wistar大鼠改编,然后在测量血糖水平后2小时测量其血糖水平,给予测试动物的stz-Na,然后在给予STZ-NA后2周,当时测试动物的血糖水平超过200,然后给出了乙醇,乙醇含量,乙二醇液位,乙二醇果实,乙二醇果实,直到乙二醇果实,直到甲状腺素效果效果,乙烯酸乙烯酸甲基甲烷液体效果,乙烯酸甲基甲基果实效果效果,乙烯酸乙烯酸乙烯酸甲非虫果实效果,乙烯酸乙烯酸甲甲烷的素质效果效果,乙烯酸乙烯酸甲基甲烷液体效果。测试动物可以恢复正常或低于200。第17天的水分为56.46,在84.48的第24天减少了百分比。在第17天的阳性对照(Glibenclamide)为54.85,在第83.17天的第24天减少了百分比。乙醇提取物和sembung叶(蓝果香脂(L.)DC)的分数具有针对链蛋白酶 - 氯辛酰胺诱导的小鼠的抗血糖活性,而在小鼠中降低血糖水平的最佳水平是水分数,是水分数,其次是阳性对照,下一个序列是乙酸乙酸乙酯。关键词:抗凝血症; blumea balsamifera; Sembung叶;链霉菌Nikotinamide如何引用(以APA风格)Billi,J。和Makani,M。(2024)。抗生物抗激素fraksi fraksi提取物乙醇在大鼠诱导的链霉亲素尼古丁胺的乙醇叶(Blumea balsamifera(L。)DC)。印度尼西亚全球健康研究杂志,6(S6),1109-1118。 https://doi.org/10.37287/ijghr.v6is6.5140。引言糖尿病(DM Endokrinologis)是一种疾病或异常代谢疾病是一组异质性,其中胰岛素分泌受损会导致高血糖水平(异常沉降)和葡萄糖不耐受。它的特征是异常高血糖(Hiperglikemia)(Soelistijo等,2019)。hiperglikemia是一种情况,禁食血糖水平的患者在110 mg / dl的血糖水平和进食后2小时(PP)高于140 mg / dl(世界卫生组织,2024年,2024年)。与印度尼西亚IDF相比,十个国家中的第五个国家中的五分之一是糖尿病数量最高的国家。百万患有糖尿病的人(Atlas,2015年)。2018年调查(Riskesdas)年,