薄玻璃切割中的时间空气脉冲效率 Madalin-Stefan Radu、Cristian Sarpe、Elena Ramela Ciobotea、Bastian Zielinski、Radu Constantinescu、Thomas Baumert 和 Camilo Florian* *通讯作者电子邮件:camilo.florian@uni-kassel.de。这是以下文章的预印本:Radu、Madalin-Stefan、Sarpe、Cristian、Ciobotea、Elena Ramela、Zielinski、Bastian、Constantinescu、Radu、Baumert、Thomas 和 Florian、Camilo。 “时间艾里脉冲在薄玻璃切割中的效率” Zeitschrift für Physikalische Chemie,2024 年。最终认证和印刷版本可在线获取:https://doi.org/10.1515/zpch-2024- 0911 超短脉冲激光源是用于微和纳米加工大带隙介电材料的有用工具。这些脉冲的最大优势之一是能够达到高强度峰值,即使在对激光波长透明的材料中也能促进吸收。此外,如果修改脉冲时间分布,能量吸收可以烧蚀直径小、深度大的孔。在这项工作中,我们提出了初步结果,将三种类型的脉冲作为玻璃切割的前体:带宽受限(785 nm 时为 30 fs)、正色散和负色散时间艾里脉冲 (TAP)。所选材料为厚度为 170 μm 的钠钙玻璃,在不同激光能量和扫描速度下,以 1 kHz 的重复率在紧密(50 倍物镜)和松散(20 倍物镜)聚焦条件下进行刻划。激光加工后,使用自制的四点弯曲台通过机械应力对玻璃进行切割。我们分析了三种激光脉冲在表面和横截面上的刻划线质量以及断裂后所需的断裂力。我们报告称,与其他实施的脉冲相比,正 TAP 在玻璃样品上产生了整齐、平整的切割边缘。关键词:玻璃切割;超短脉冲激光;高纵横比结构;激光加工;时间脉冲整形;薄玻璃
• σ 𝑖 𝑐 𝑖 𝑂 𝑖 ⊗ ρ 𝑖 • 𝑐 𝑖 是系数 • 𝑂 𝑖 是 X、Y、Z 基础上的测量值 • ρ 𝑖 是 |0⟩ 、|1⟩、|+⟩、| 𝑖 ⟩ 状态的初始化
Lisa F Horowitz 1*、Ricard Rodriguez-Mias 2、Marina Chan 3、Songli Zhu 3、Noah R Gottshall 1、Ivan Stepanov 1,4、Casey Stiles 1,5、Marcus Yeung 3、Tran NH Nguyen 1,6、Ethan J Lockhart 1、Raymond S Yeung 7、Judit Villen 2、Taranjit S Gujral 3 和 Albert Folch 1 附属机构 1 华盛顿大学生物工程系,美国华盛顿州西雅图。 2 华盛顿大学基因组科学系,美国华盛顿州西雅图。 3 弗雷德哈钦森癌症研究中心人类生物学部,美国华盛顿州西雅图。 4 华盛顿大学机械工程系,美国华盛顿州西雅图。 5 华盛顿大学化学工程系,美国华盛顿州西雅图。 6 华盛顿大学生物化学系,华盛顿州西雅图,美国。 7 华盛顿大学外科系,华盛顿州西雅图,美国。 * 通讯作者。电子邮件:lhorowit@gmail.com 摘要 为了弥合实验室和临床之间的差距,需要更忠实的人类癌症模型,这些模型可以重现人类肿瘤微环境 (TME) 的主要特征,同时促进大规模药物测试。我们最近开发的显微切割方法优化了从肿瘤活检中获取大量立方形微组织(“立方形”,~(400 µm) 3 )的产量。在这里,我们证明同基因小鼠肿瘤模型和人类肿瘤的立方形保留了复杂的 TME,使其适合于药物和免疫疗法评估。我们表征了相关的 TME 参数,例如细胞结构、细胞因子分泌、蛋白质组学谱以及对多孔阵列中药物面板的反应。尽管经过切割程序并培养时间较长(长达 7 天),长方体仍表现出强烈的细胞因子表达和药物反应,包括对免疫疗法的反应。总体而言,我们的结果表明,长方体可以为个性化肿瘤学应用提供必要的治疗信息,并有助于开发 TME 依赖性疗法和癌症疾病模型,包括用于临床试验。
文章历史:24-049 收稿日期:2024 年 7 月 19 日 修订日期:2024 年 8 月 21 日 接受日期:2024 年 8 月 27 日 摘要 绿豆从古老的驯化到成为遗传和基因组学进步的前沿,其演变历程表明了农业和科学进步的非凡历程。绿豆起源于早期农业社会的重要作物,在传统育种实践和现代技术创新的推动下发生了重大转变。本综述全面概述了绿豆的进化,强调了从古代选择方法到当代遗传和基因组学方法的过渡。它探讨了历史上的驯化过程、通过传统和现代育种技术开发多样化品种,以及高通量表型分析、下一代测序和基因编辑工具等尖端技术的整合。这些进步不仅增强了我们对绿豆遗传学的了解,而且还促成了具有抗病、耐旱和营养品质提高等特性的改良品种的诞生。尽管取得了这些成就,但遗传多样性和可持续实践等挑战仍然存在,需要持续的研究和创新。评论最后强调了新兴技术和合作努力在塑造绿豆研究的未来和促进全球粮食安全方面的潜力。关键词:绿豆、遗传改良、基因组进步、基因编辑、高通量表型分析
尽管有动态的趋势,但氢市场的发展速度不如预期的,低碳氢在难以抗化的领域的脱碳潜力,再加上其促进能源促进能源在近年内促进资源受限区域的能力。然而,尽管越来越多的新低碳氢项目公告 - 如果所有宣布的项目实现,则可能到2030年达到38吨 - 只有4%的项目达到了国际能源机构(IEA)报告的最终投资决定(FID)或建筑阶段。显然,我们尚未实现我们的目标。
此外,为了使该国的循环生物经济能够与Hon'ble PM发起的“环境生活方式(Life)”与“环境生活方式(Life)”保持一致,以通过在生活的各个方面融合绿色和友好的环境解决方案来推动全球气候变化的“生活方式(Life)”。这种新的生物遗星渴望培养“生物制造”的巨大潜力,以促进土著创新解决方案的发展,以改善医疗保健结果,提高农业生产力,促进生物经济经济的增长,基于生物经济的生物经济,扩大和商业化,基于生物的范围,扩大了印度的同事,扩大了高度技能的企业,并强化了努力。
量子计算有可能为传统计算机无法解决的复杂问题提供更快、更精确的解决方案。然而,目前量子设备的量子比特数量有限,错误率高,限制了可以成功执行的计算规模。解决这一问题的一种方法是量子电路切割,它将量子计算划分为多个可在现有量子设备上执行的较小部分,并以经典方式组合它们的结果以获得原始计算的结果。即使量子设备成熟,由于现有计算基础设施中增加了量子比特数量有限的量子设备,电路切割的重要性甚至可能增加。然而,目前缺乏对当前电路切割技术的全面比较,更不用说为量子软件工程师提供应用这些技术的抽象指导了。此外,为了促进合作,量子软件工程师需要对电路切割有共同的理解。在这项工作中,我们介绍了三种专注于量子电路切割的模式,这些模式描述了经过验证的解决方案策略,这是提供抽象指导和促进该领域共同理解的第一步。这些模式被集成到现有的量子计算模式语言中,从而支持量子软件工程师对量子电路切割的理解和应用,并促进其实际实现。
探索体内模型的替代方案,本研究验证了精确切割肺切片(PCLS)是可行的肺癌研究的可行的离体平台。我们确定了PCLS的长期活力和结构保存,对于准确的药物反应研究至关重要。使用紫杉醇作为基准药物和一种与免疫疗法结合使用的具有治疗良好的银纳米颗粒,我们对其对PCLS对PCLS的治疗作用进行了开创性的比较分析。结果表明,PCL在体内反应中紧密模仿,表明肿瘤生长抑制作用中的药物疗效可比。这种直接比较不仅证实了PCL在模拟现实结果中的实用性,而且还强调了其在减少动物测试中的潜力。通过为肺癌研究提供可靠,道德和有效的替代方案,PCL可以显着增强临床前研究和药物的开发,这标志着迈向更人性化和代表性的科学研究的关键一步。