玉米:美国人熟知并喜爱的作物……或者至少我们是这么认为的。现代玉米看起来与其原始形态——一种名为大刍草的野草——如此不同,你很难认识到这两种植物有关联。经过数千年的定向进化,大刍草的小穗和难以消化的谷粒进化成了玉蜀黍的大穗,每个穗上有多达 500 颗多汁的谷粒(图 1)。1 玉米只是人类主导植物进化的一个例子;自文明开始以来,我们就一直在驯化和栽培农作物品种。虽然用于选择性育种植物的技术随着时间的推移而变得越来越先进,但基本原理仍然是一样的——利用物种中现有的变异来增加我们认为“理想”性状的流行率,比如玉米的穗更大。从历史上看,这是通过连续的育种实现的;今天,借助强大的基因组编辑工具,我们能够用更少的时间和精力获得相同(甚至更显著)的结果。
作为种植范围最广的作物之一,玉米 ( Zea mays L.) 已被科研人员和育种家广泛研究了一个多世纪。随着各种组学数据高通量检测的进展,人们积累了丰富的玉米及其野生近缘种大刍草的多维和多组学信息。整合这些信息有可能加速遗传研究并改良玉米农艺性状。为此,我们构建了 ZEAMAP ( http://www.zeamap.com ),这是一个综合性的数据库,包含多个参考基因组、注释、比较基因组学、转录组、开放染色质区域、染色质相互作用、高质量遗传变异、表型、代谢组学、遗传图谱、遗传图谱位点、种群结构和大刍草与玉米之间的驯化选择信号。ZEAMAP 用户友好,能够以交互方式整合、可视化和交叉引用多个不同的组学数据集。
t检验是一种用于分析某个种群与另外两个种群之间的差异的统计方法,是对简单Fst分析的改进。此类方法已在其他方面得到成功应用,例如,用于分析藏族相对于中国人和欧洲人对高海拔的适应性(Yi et al., 2010),以及用于分析玉米(Zea Mays L.)的驯化过程,将大刍草与两个栽培品种种群进行比较(da Fonseca et al., 2015)。另一方面,由于选择压力导致的偏离中性进化模型的基因组区域遗传多样性改变可通过Tajima的D统计量来测量(Nielsen, 2001; Tajima, 1989)。在这种情况下,正值可能同时表示平衡选择和基因渗入的影响,而负值通常被推断为驯化选择的迹象。