1996年1月1日以后生产的报告通常可以通过美国能源部(DOE)Scitech Connect免费获得。网站www.osti.gov 1996年1月1日之前生成的报告可由以下资料来源:国家技术信息服务:国家技术信息服务5285皇家皇家路Springfield,VA 22161电话703-605-6000(1-800-553-6847) info@ntis.gov Website http://classic.ntis.gov/ Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail reports@osti.gov Website http://www.osti.gov/contact.html
摘要 — 当前的量子计算机受到非平稳噪声信道的影响,错误率很高,这削弱了它们的可靠性和可重复性。我们提出了一种基于贝叶斯推理的自适应算法,该算法可以根据变化的信道条件学习和减轻量子噪声。我们的研究强调了对关键信道参数进行动态推理以提高程序准确性的必要性。我们使用狄利克雷分布来模拟泡利信道的随机性。这使我们能够进行贝叶斯推理,从而可以提高时变噪声下概率误差消除 (PEC) 的性能。我们的工作证明了表征和减轻量子噪声的时间变化的重要性,这对于开发更准确、更可靠的量子技术至关重要。我们的结果表明,当使用与理想分布的 Hellinger 距离来衡量时,贝叶斯 PEC 的性能可以比非自适应方法高出 4.5 倍。索引词 — 设备可靠性、计算精度、结果可重复性、概率错误消除、自适应缓解、时空非平稳性、时变量子噪声、NISQ 硬件-软件协同设计
协变码是一种量子码,逻辑系统上的对称变换可以通过物理系统上的对称变换来实现,通常具有有限的量子纠错能力(一个重要的例子是 Eastin-Knill 定理)。理解协变量子纠错极限的需求出现在物理学的各个领域,包括容错量子计算、凝聚态物理和量子引力。在这里,我们从量子计量和量子资源理论的角度探索了连续对称性的协变量子纠错,在这些以前分散的领域之间建立了牢固的联系。我们证明了协变量子纠错不保真度的新的、强大的下界,这不仅扩展了以前不行的结果的范围,而且比现有界限有了很大的改进。为擦除和去极化噪声推导出了明确的下界。我们还提出了一种几乎饱和这些下界的协变码。
只有一克人的便便,有超过1000亿个细菌和最多1万亿个噬菌体!这意味着古代人类便便样品非常适合查找噬菌体DNA。我们选择了30个古老的便便样品。我们选择的最古老的样本来自5300年的冷冻木乃伊,名为ÖtziiCeman。我们还使用了来自世界各地的古代人类的大便,包括美国,墨西哥和奥地利(图1)。猜猜是什么?我们不必自己收集任何样本,因为它们以前是由不同小组研究的。我们只是回收了他们的数据!
1. 包括约 3500 万欧元用于高性能材料 | 2. 约 3.5 亿欧元/年 | 3. 平均约 8000 万欧元/年,包括约 1500 万欧元/年用于 PM,未来几年将逐步增加
模块化作为管理复杂性和设计灵活的组织和技术系统的一种手段,正受到越来越多的关注(Baldwin & Clark,2000;Ethiraj & Levinthal,2004;Thomke & Reinertsen,1998)。人们对模块化组织和产品的兴趣源于了解企业如何在动态环境中更好地竞争的需求(Eisenhardt & Martin,2000;Levinthal,1997;Teece、Pisano & Shuen,1997)。持续的技术变革、变化无常的客户和竞争格局的频繁变化是许多行业的特点(D'Aveni,1994),无论动荡程度与过去相比如何(McNamara & Vaaler,2003),我们都需要了解企业如何在这些环境中取得成功。频繁的变化挑战了战略管理的两个核心概念:持续的竞争优势和独特的能力。如果市场不断变化,企业如何希望建立维持竞争优势的资源和能力?此外,可靠的组织行动需要目标和能力的稳定性(Hannan & Freeman,1984)。如果管理者无法辨别他们的企业应该致力于哪些活动,应该避免哪些活动——也就是说,什么样的活动可以避免?