b"由于四舍五入,总值可能不等于 100%。本文件是一般性沟通,仅供参考。它本质上是教育性的,并非旨在推荐任何特定的投资产品、策略、计划功能或其他目的。使用的任何示例都是通用的、假设的,仅供说明之用。在做出任何投资或财务决策之前,投资者应向个人财务、法律、税务和其他专业人士寻求个性化建议,这些建议考虑到投资者自身情况的所有具体事实和情况。风险摘要以下风险可能导致该策略的投资组合亏损或表现不如其他投资。由于一些海外市场的政治和经济不稳定,国际投资具有更大的风险和更大的波动性。美国以外的货币汇率变化和不同的会计和税收政策可能会影响回报。综合综合包括根据创新者战略投资的所有可自由支配的独立管理账户。该战略旨在通过投资旨在有效推动创新的公司来实现长期总回报,这些公司通过投资研发来实现更高的增长和盈利能力。综合指数的起始日期为 2022 年 12 月 1 日。综合指数的创建日期为 2022 年 11 月 7 日。指数管理账户收取费用会降低其绩效:指数则不会。您不能直接投资指数。罗素 1000 指数是一个非管理指数,用于衡量罗素 3000 指数中 1,000 家最大公司(按市值计算)的表现。过去的表现并不能保证未来的结果。前十大持股所列的前十大持股仅反映该策略的长期投资。不包括短期投资。持股可能会发生变化。所列持股不应被视为购买或出售特定证券的建议。每种证券均按策略中持有的证券总市值的百分比计算,不包括衍生品头寸的使用(如适用)。投资组合分析定义市盈率是每股收益乘以该数字以估计股票的价值。”
摘要 图神经网络 (GNN) 是深度学习社区中一个新兴的框架。在大多数 GNN 应用中,数据样本的图拓扑结构在数据集中提供。具体而言,图移位算子 (GSO) 是先验已知的,它可以是邻接、图拉普拉斯或它们的规范化。然而,我们通常不了解现实世界数据集背后的真实图拓扑结构。其中一个例子是从生理脑电图 (EEG) 中提取主体不变特征来预测认知任务。以前的方法使用电极位点来表示图中的节点并以各种方式连接它们来手工设计 GSO,例如,i) 每对电极位点连接以形成完整图,ii) 特定数量的电极位点连接以形成 k 最近邻图,iii) 仅当欧几里得距离在启发式阈值内时,每对电极位点才连接。在本文中,我们通过使用多头注意机制对 GSO 进行参数化来克服这一限制,以探索不同电极位置之间在认知任务下的功能性神经连接,同时结合图卷积核的参数学习无监督图拓扑结构
摘要 GaN 技术不仅在功率和射频电子领域获得广泛关注,而且还迅速扩展到其他应用领域,包括数字和量子计算电子。本文概述了未来的 GaN 器件技术和先进的建模方法,这些技术和方法可以在性能和可靠性方面突破这些应用的界限。虽然 GaN 功率器件最近已在 15-900 V 级实现商业化,但新的 GaN 器件对于探索高压和超低压功率应用非常有吸引力。在 RF 领域,超高频 GaN 器件正用于实现数字化功率放大器电路,并且可以预期使用硬件-软件协同设计方法将取得进一步的进展。GaN CMOS 技术即将问世,这是实现集成数字、功率和 RF 电子技术的全 GaN 平台的关键缺失部分。尽管目前是一个挑战,但高性能 p 型 GaN 技术对于实现高性能 GaN CMOS 电路至关重要。由于其出色的传输特性和通过极化掺杂产生自由载流子的能力,GaN 有望成为超低温和量子计算电子学的重要技术。最后,鉴于新设备和电路的硬件原型设计成本不断增加,使用高保真设备模型和数据驱动的建模方法进行技术电路协同设计预计将成为未来的趋势。在这方面,物理启发、数学稳健、计算负担较少和预测性的建模方法是必不可少的。凭借所有这些以及未来的努力,我们预计 GaN 将成为电子产品的下一个 Si。
摘要 可穿戴传感器的最新发展为以有效和舒适的方式监测生理状态带来了希望。生理状态评估的一个主要挑战是迁移学习的问题,该问题是由不同用户或同一用户的不同记录会话中的生物信号域不一致引起的。我们提出了一种对抗性推理方法进行迁移学习,以从生理生物信号数据中提取解开的干扰鲁棒表示,以进行压力状态水平评估。我们利用任务相关特征和人员判别信息之间的权衡,通过使用对抗网络和干扰网络来联合操纵和解开编码器学习到的潜在表示,然后将其输入到判别分类器。跨受试者转移评估的结果证明了所提出的对抗框架的优势,从而展示了其适应更广泛受试者的能力。最后,我们强调我们提出的对抗性迁移学习方法也适用于其他深度特征学习框架。
摘要 为了对广域电网进行监控,人们开发了广域监控系统 (WAMS)。每个变电站都设有全球定位系统 (GPS) 接收系统以提供可信的授时。因此,对于 WAMS 来说,在广域范围内维持真实的 GPS 授时至关重要。然而,由于未加密的信号结构和低信号功率,GPS 授时容易受到欺骗。因此,为了从欺骗中获得可信的 GPS 授时,人们在人工智能 (AI) 框架下开发了一种新的广域监控算法,该算法由分布式信念传播 (BP) 和双向循环神经网络 (RNN) 组成。这种联合 BP-RNN 算法通过利用其分布式处理能力评估估计的 GPS 授时误差来验证每个变电站的身份。特别是,双向 RNN 在人工智能框架下提供了一种快速的授时误差估计方法。仿真结果验证了该方法比基于 Kullback-Leibler 散度的方法具有更快的检测时间,并且定时误差估计精度超过了 IEEE C37.118.1-2011 标准规定的限制。
摘要 在基于脑电图 (EEG) 的分类任务中发现和利用共享的、不变的神经活动对于跨受试者或 EEG 记录会话的解码模型的通用性具有重要意义。虽然深度神经网络最近成为通用的 EEG 特征提取器,但这种迁移学习方面通常依赖于先前的假设,即深度网络自然表现为受试者(或会话)不变的 EEG 特征提取器。我们建议在模型训练期间以系统的方式进一步实现 EEG 深度学习框架的不变性。我们引入了一种对抗性推理方法来学习在判别设置内对受试者间变异不变的表示。我们使用公开的运动想象 EEG 数据集和基于卷积神经网络的 EEG 解码模型在提出的对抗性学习框架内进行实验研究。我们展示了跨学科模型转移场景中的结果,展示了学习网络的神经生理学解释,并讨论了对抗性推理为不断发展的 EEG 深度学习领域提供的潜在见解。
摘要 集成光信号处理器与传统电信号处理器相结合,有望开辟新一代信号处理硬件平台的道路,从而显著提高处理带宽、延迟和功率效率。硅光子学以其众所周知的特性和潜力,被认为是设备实现的理想候选者,特别是对于高电路复杂度的设备,因此一直是研究的重点。从前面对此类处理器的讨论来看,我们正在考虑在硅光子平台中构建新的构建块,以进一步扩展处理器功能和增加实用功能,特别是微型设备,这些设备能够将复杂电路超密集地集成到此类处理器芯片中。作为启发性的例子,我们在此回顾了我们最近的贡献以及其他组的硅光子设备紧凑设计中的代表性作品,这些设计丰富了处理器构建块的功能,例如多路复用、偏振处理和光学 I/O。本综述中显示的结果反映了最先进的光子制造技术的意义和成熟度,并有助于实现芯片级的大容量、通用光信号处理功能。