MLSEQ是用于应用机器学习算法在下一代RNA-sequecting(RNA-SEQ)数据中应用的综合软件包。研究人员出于各种目的呼吁MLSEQ,其中包括疾病结果的预测,最佳特征子集(基因,转录本,其他同工型)的识别以及根据其预测重要性对特征进行分类。使用此软件包,研究人员可以上传其原始的RNA-seq计数数据,预处理数据并执行各种机器学习算法。预处理方法包括DESEQ平均值(TMM)归一化方法的DESEQ中值和修剪平均值,以及每毫米读取计数的对数(log-CPM),方差稳定转换(VST),正规化对数转换(RLOG)和方差模型在观察级别(voy)级别(voy)变换(voy)。归一化方法可用于纠正系统变化。转换方法可用于使离散的RNA-seq数据在层次上更接近微阵列,并进行基于微阵列的层化算法。当前,MLSEQ软件包包含90多个基于微阵列的分类器,包括最近开发的基于VOOM的判别分析分类器。除了这些分类器外,MLSEQ软件包还包括基于离散的分类器,例如Poisson线性判别分析(PLDA)和负二项式线性判别分析(NBLDA)。在预处理数据上,研究人员可以构建分类模型,对这些模型进行参数优化,评估模型性能并比较不同分类模型的性能。此外,可以通过构建模型预测测试样本的类标签。MLSEQ是用户友好,简单,目前是文献中针对RNA-Seq分类开发的最全面的软件包。要开始使用此软件包,用户需要上传其计数数据,其中包含每个样本映射到每个成绩单的读数数。可以从RNA-SEQ实验中获得此类计数数据,也可以从其他测序实验(例如芯片测序或元基因组测序)中获得。提出了此小插图,以指导研究人员如何使用此软件包。
运动想象 (MI) 脑电信号广泛应用于脑机接口 (BCI) 应用中,因为它们通过想象肢体运动让用户完全控制 [9]。想象和物理肢体运动会引起微节律同步和去同步,这可以通过使用脑电图技术在感觉运动皮层上进行探索 [10]。许多研究已经实现了特征选择和降维的具体技术,其中包括遗传算法 (GA) [11]、顺序前向特征选择 (SFFS) [12]、线性判别分析 (LDA) [13]、经验模态分解 (EMD) [14] 和 Fisher 判别分析 (FDA) [15]。因此,高效的线性分类器如支持向量机 (SVM) [16] 和 LDA [17] 被广泛用于特征分类。此外,贝叶斯分类器 [18]、隐马尔可夫模型分类器 (HMM) [19] 和 k-最近邻 (k-NN) 分类器 [20] 同样为 EEG 特征分类提供了有竞争力的结果。在这方面,Miao 等人 [21] 将右手食指解码应用于手指康复。Nijisha 等人 [22] 使用基于公共空间模式 (CSP) 的空间滤波器和单个卷积层对左手、右手、双手和脚 MI-EEG 信号进行分类。
本课程涵盖了现代多元数据分析和统计学习的方法,包括其理论基础和实际应用。主题包括主要组成分析和其他缩小技术,分类(判别分析,最近的邻居分类器,逻辑回归,支持向量机器,决策树,集合方法,神经网络),聚类(K-Means,k-Means,基于层次的聚类,基于模型的方法,基于模型的方法,光谱群 - 倾向),图形的模型和某些基础模型和一些基础。目标是了解什么
摘要:热带森林具有极为丰富的植物多样性,但其特征描述仍不完整,部分原因是现场评估的资源密集度。遥感技术可以提供有价值、经济高效、大规模的见解。本研究调查了机载激光雷达和成像光谱的结合使用,以在法属圭亚那的景观尺度上绘制树种图。使用线性判别分析 (LDA)、正则化判别分析 (RDA) 和逻辑回归 (LR) 为 20 个物种中的每一个开发了二元分类器。用短波红外 (SWIR) 波段补充可见光和近红外 (VNIR) 光谱带可将目标物种的平均分类准确率从 56.1% 提高到 79.6%。增加非焦点物种的数量会降低目标物种识别的成功率。只要使用适当的标准来调整阈值概率分配,分类性能就不会受到非焦点类别中的杂质率(分配类别之间的混淆)的显著影响(偏差高达 5%)。每个物种类别中有限的树冠数量(30 个树冠)足以有效地检索正确的标签。在 1.5 公顷的分辨率下,目标物种的总冠层面积与 118 公顷的基部面积密切相关,这表明该方法的操作应用具有现实的前景(六种主要商业树种的 R 2 = 0.75)。
受试者和HBO/HBR-WISE分类模型嵌套的交叉验证具有超参数优化(5倍折叠à20次重复)公制AUC-ROC经验机会水平估计的经验机会水平估计了使用假人分类器分类器:线性判别分析(LDA),STER(LDA)(SSV MACHICER)(s vecter)(s vector)(s vecter)(范围)。平均,最大,最小,峰值2Peak,斜率,Time2Peak评估:交叉验证折叠上的自举以估计平均值及其置信区间
大脑中周期性信号称为稳态视觉诱发电位 (SSVEP),由闪烁刺激引起。它们通常通过回归技术检测,该技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验才能在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于使用 SSVEP 信号操作的 BCI 系统,可靠性是以速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,无校准回归方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。所提出的方法对于只有少量校准试验可用的小样本量设置非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,试验时间短至一秒。 OSTDA 在不同实验设置(包括具有认知障碍的实验设置)下的表现与其他三种基准最新技术相似或明显更好(即具有控制、听力、口语和思考条件的四个数据集)。 总体而言,在本文中,我们表明 OSTDA 是所有研究管道中唯一能够在所有分析条件下实现最佳结果的管道。 2021 由 Elsevier BV 出版
摘要 — 自闭症谱系障碍 (ASD) 是一种神经发育综合征,患者的社交互动、沟通技巧和情感表达能力下降。自闭症综合征可以通过脑电图 (EEG) 检测出来。本研究利用自闭症患者的脑电图来支持机器学习方案的分类研究,以获得最佳准确度。对脑电信号进行分类的最佳方法之一是线性判别分析 (LDA),这是一种对自闭症和正常脑电信号进行分类的机器学习技术。之所以选择 LDA,是因为它可以通过利用类间和类内函数来最大化类间距离并最小化散射数量。该方法与其他方法相结合:独立成分分析 (ICA) 和离散小波变换 (DWT),以提高准确度系统。ICA 可以去除脑信号以外的伪影或信号,这些伪影或信号可能会导致脑电信号中的噪声,因此分析的信号是完整的脑电信号,没有其他因素。DWT 可以帮助增加脑电信号中的噪声抑制,并通过频率和时间表示提供信号信息。脑电图数据集来自 16 名儿童(8 名自闭症儿童和 8 名正常儿童)。数据集中的信号使用 ICA 过滤伪影,通过 DWT 分解成三个级别,并使用线性判别分析 (LDA) 技术进行分类。使用混淆矩阵,结果显示最佳准确率为 99%。
分析了五种酵母菌株,以生成由人工智能 (AI) 使用卷积神经网络或线性判别分析 (LDA) 确定的识别模型。通过向软件输入每个获取细胞的每个通道的形态特征来构建模型。我们结合了两个模型:一个基于明场特征,通过对模型预测的每个菌株的身份及其实际类别进行统计分析来验证;第二个使用 LDA 算法,并添加了自发荧光测量。计算出的“超参数”允许在分析混合种群时最大限度地分离不同的菌株。
大脑中闪烁刺激会引发周期性信号,即稳态视觉诱发电位 (SSVEP)。它们通常通过回归技术检测,这种技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验,以便在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于 SSVEP 信号操作的 BCI 系统,可靠性是以牺牲速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,基于无校准回归的方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。对于只有少量校准试验可用的小样本量设置,所提出的方法非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,使用短至一秒的试验。在不同的实验环境下,包括具有认知障碍的实验环境(即具有控制、听力、说话和思考条件的四个数据集),OSTDA 的表现与其他三种基准最新技术相似或明显更好。总体而言,在本文中,我们表明 OSTDA 是所有研究的管道中唯一可以在所有分析条件下实现最佳结果的管道。2021 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要:p300组件的单审判分类是一项困难的任务,因为信号比率低。但是,其应用于脑部计算机界面开发可以显着提高这些系统的可用性。本文介绍了P300分类的基线线性判别分析(LDA)与复发性(CNN)和经常性神经网络(RNN)的比较。实验是基于大型多学科的学龄儿童数据集。实验研究和讨论了几种超参数选择。提出的CNN略优于RNN和基线LDA分类器(63.2%的准确性比61.3%和62.8%)。差异在精度和回忆中最为明显。讨论了结果和建议对未来工作的含义,例如堆叠的CNN – LSTM。