农业创新对于扩大农作物的遗传多样性至关重要,专注于提高产量,对生物和非生物应力因素的耐受性营养价值以及对新环境的适应性,尤其是在响应气候变化方面。利用各种遗传资源,包括在包括局部陆地等基因库中维持的农场多样性和种质,以及次级基因库,也必须变得势在必行。传统品种,陆地和其他未充分利用的种系很少被育种者使用,主要是由于不必要的联系。基因组学工具可以有效地处理这一问题。例如,大米中的“ SD1基因与干旱耐受性QTL之间的遗传联系”是一个显着的繁殖挑战,最近通过标记辅助育种克服了。另一个例子是“ Cimmyt-发现的种子(种子)”计划,该计划使用基因组学工具来大量使用小麦种质库。先进的基因组学工具和技术通过知识丰富为制定育种计划的知识发展提供了有希望的途径。通过识别和融合新等位基因来整合未充分利用的遗传多样性和解锁遗传多样性,可以扩大培养品种的遗传基础。这种方法称为“基因组学辅助杂种”,包括多样性分析,功能基因组学和结构基因组学,以及用于作物改善所需的先进统计工具。拥抱“基因组辅助 - 预育”对于满足全球粮食,燃料和鱼的需求而言至关重要。
为了开发具有独特性能和功能的先进/下一代材料,人们开始研究自然界中常见的分级组装。[1,2] 为了遵循模仿自然的理念,使用可再生/天然来源的构建块来开发分级结构最近成为自下而上制造领域的中心主题。纳米纤维素就是这样一种构建块,包括纤维素纳米晶体 (CNC) 和纤维素纳米原纤维 (CNF)(图 1),它由地球上最丰富的可再生聚合物纤维素组成。近年来,CNC 和 CNF 引起了人们的极大研究兴趣,广泛应用于生物医学、储能、包装、复合材料和特种化学品等多个行业。 [3–5] 这些高度结晶、高纵横比的纳米颗粒由 β (1–4) 连接的 D-葡萄糖单元的线性均聚物组成,表现出令人印象深刻的机械性能和可调的表面化学性质。鉴于 CNC 和 CNF 的高强度、尺寸各向异性和天然来源,使用纳米纤维素作为开发分级组装体的功能性构件引起了人们的极大兴趣。由于人们对纳米纤维素的广泛兴趣,之前已经发表了几篇评论,涵盖了 CNC 和 CNF 的材料特性、生产、加工、特性策略、化学改性和潜在应用,我们建议任何感兴趣的读者阅读这些评论以获取更多信息。[2–19]
低碳氢是 2050 年实现净零排放的重要因素。生物质制氢是一种很有前途的生物能源,结合碳捕获和储存 (BECCS) 方案,可以生产低碳氢并产生预计需要的二氧化碳去除 (CDR),以抵消难以减少的排放。在这里,我们设计了一个用于生物质制氢并结合碳捕获和储存的 BECCS 供应链,并以高空间分辨率量化欧洲制氢和 CDR 的技术潜力。我们考虑对粮食安全和生物多样性影响最小的可持续生物质原料,即农业残留物和废弃物。我们发现,这种 BECCS 供应链每年最多可生产 1250 万吨 H 2(目前欧洲每年使用约 10 万吨 H 2)并从大气中每年去除多达 1.33 亿吨 CO 2(占欧洲温室气体排放总量的 3%)。然后,我们进行地理空间分析,量化生物质原料所在地与潜在氢气用户之间的运输距离,发现 20% 的氢气潜力位于难以电气化的行业 25 公里以内。我们得出结论,用于从生物质生产氢气的 BECCS 供应链代表了一个被忽视的近期机会,可以产生二氧化碳去除和低碳氢气。
摘要 人类与致命疾病的斗争自古以来就一直在持续。科学技术在对抗这些疾病方面的贡献不容忽视,这完全归功于新方法和产品的发明,它们的尺寸范围从微米扩展到纳米。最近,纳米技术因其诊断和治疗不同癌症的能力而受到越来越多的关注。不同的纳米粒子已被用于规避与保守的抗癌输送系统相关的问题,包括其非特异性、副作用和突发释放。这些纳米载体包括固体脂质纳米粒子 (SLN)、脂质体、纳米脂质载体 (NLC)、纳米胶束、纳米复合材料、聚合物和磁性纳米载体,它们带来了抗肿瘤药物输送的革命。纳米载体提高了抗癌药物的治疗效果,在特定部位更好地积累并持续释放,提高了生物利用度,并绕过正常细胞导致癌细胞凋亡。在这篇综述中,简要讨论了癌症靶向技术和纳米粒子的表面改性,以及可能面临的挑战和机遇。可以得出结论,了解纳米医学在肿瘤治疗中的作用具有重要意义,因此,该领域的现代进展对于肿瘤患者的繁荣今天和富裕未来至关重要。
嵌合抗原受体 (CAR) T 细胞疗法彻底改变了血液系统恶性肿瘤的治疗,在原本难治的疾病中提供了显著的缓解率。然而,将其扩展到更广泛的肿瘤学应用面临着重大障碍,包括在实体瘤中的疗效有限、与毒性相关的安全问题以及制造和可扩展性方面的后勤挑战。本综述严格审查了旨在克服这些障碍的最新进展,重点介绍了 CAR T 细胞工程的创新、新的抗原靶向策略以及在肿瘤微环境中的递送和持久性的改进。我们还讨论了同种异体 CAR T 细胞作为现成疗法的开发、减轻副作用的策略以及 CAR T 细胞与其他治疗方式的整合。这项全面的分析强调了这些策略在提高 CAR T 细胞疗法的安全性、有效性和可及性方面的协同潜力,为其在癌症治疗中的进化轨迹提供了前瞻性的视角。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
我写这本书的首要动机是一句您将在接下来的内容中多次看到的短语。这句话是:“转移性疾病无法治愈”。这句话之所以如此重要,是因为尽管我们在癌症研究方面取得了数十年的巨大进步,但一旦疾病扩散到远处器官,患者的治疗进展就非常有限。正因为如此,我们作为一个社区显然是时候尝试一些新方法了,因为标准化疗虽然在疾病的其他阶段有用,但无法让我们到达最后的顶峰,即转移性癌症的治愈。在我看来,其中一种这样的策略涉及将现代人工智能 (AI) 和机器学习 (ML) 方法应用于从癌症患者和癌症衍生细胞系中积累的大量基因组数据,以制定真正个性化的策略,以对个体患者进行癌症逆向工程。因此,本书的目标是让读者相信这是可能的,至少是一条值得追求的途径。首先我要说的是,我将在本书中强调人工智能对基因组数据的分析如何帮助我们更好地利用癌症靶向疗法。与此同时,其他人也在努力开发类似的方法,利用计算和人工智能方法来改善癌症免疫疗法的使用,因为免疫疗法提供了另一套可用于转移性癌症患者的工具。由于我不是免疫学家,我不会在这里讨论这些方法,因为它们可以在其他出版物中找到。
在计算机图形学中创建高质量的材质是一项具有挑战性且耗时的任务,需要很高的专业知识。为了简化这个过程,我们引入了 MatFuse,这是一种统一的方法,它利用扩散模型的生成能力来创建和编辑 3D 材质。我们的方法整合了多种条件来源,包括调色板、草图、文本和图片,增强了创造可能性并对材质合成进行了细粒度的控制。此外,MatFuse 通过多编码器压缩模型的潜在操作实现了地图级材质编辑功能,该模型可以学习每个地图的解开的潜在表示。我们在多种条件设置下展示了 MatFuse 的有效性,并探索了材质编辑的潜力。最后,我们根据 CLIP-IQA 和 FID 分数定量评估生成材质的质量,并通过开展用户研究定性评估生成材质的质量。用于训练 MatFuse 的源代码和补充材料可在 https://gvecchio.com/matfuse 上公开获取。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
