在本文中,我们描述了一种新型 CPGES,称为地球电池扩展 II (EBE II),它使用大型表面储罐或气量计在接近大气压的条件下储存二氧化碳。这使得电池放电阶段最多可产生 260 MW e 的电力,而单靠 CPG 只能产生 2.5 MW e。此外,新的 CPGES 系统可以配置为生产可在接近大气压下升华的固体 CO2(干冰),提供 -78 °C 的散热器,可用于一般冷却目的,特别是用于从空气中低温捕获二氧化碳。反过来,这种二氧化碳可用于开发更多这样的 CPGES 系统。如果不需要散热器,可以通过增加(额外)级来优化涡轮机,从而增加电力输出而不会形成干冰。
在快速发展的人工智能 (AI) 领域,组织正在积极探索其变革能力。人工智能不可抗拒地挂在每个人嘴边——学者、公司、政策制定者和政府。可以说,人工智能越来越重要,并且越来越依赖我们生活的方方面面,但更广泛地说,它对社会的影响更大。特别是,企业对人工智能的兴趣已经深深地影响了投资决策,尽管必须注意,这并不是一个完全新的现象,至少当我们试图将商业智能的起源历史化时,它早在生成和分析人工智能出现之前就已扎根。此外,我们还看到政治实体(在这个意义上是国家)将人工智能纳入其投资战略和监管框架的能力可能带来的结果。同样,可以说,人工智能给私营和公共部门领域带来了不可否认的变革性影响,并且可能带来这种影响。
2024 年 11 月 28 日 — SwipeRx 正在通过为印度尼西亚的药品供应提供解决方案引领数字化转型。我们共同利用他们的数字健康工具来构建。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
○ 人工智能补充人类顾问,处理日常任务并提供数据驱动的见解 ○ 人类顾问带来同理心、复杂问题解决能力和道德判断,这是人工智能无法复制的 ○ 未来很可能是一种协作模式,其中人工智能增强了人类顾问的能力
摘要 计算复杂性是计算机科学和数学的一门学科,它根据计算问题的固有难度对其进行分类,即根据算法的性能对其进行分类,并将这些类别相互关联。P 问题是一类可以使用确定性图灵机在多项式时间内解决的计算问题,而 NP 问题的解可以在多项式时间内验证,但我们仍然不知道它们是否也可以在多项式时间内解决。所谓 NP 完全问题的解也将是任何其他此类问题的解。它的人工智能类似物是 AI 完全问题类,对于该类问题仍然没有完整的数学形式化。在本章中,我们将重点分析计算类,以更好地理解 AI 完全问题的可能形式化,并查看是否存在适用于所有 AI 完全问题的通用算法(例如图灵测试)。为了更好地观察现代计算机科学如何尝试解决计算复杂性问题,我们提出了几种涉及优化方法的不同深度学习策略,以表明无法精确解决高阶计算类问题并不意味着使用最先进的机器学习技术无法获得令人满意的解决方案。这些方法与人类解决类似 NP 完全问题的能力的哲学问题和心理学研究进行了比较,以强化我们不需要精确和正确解决 AI 完全问题的方法就可以实现强 AI 的概念的说法。
● 即时价值:售前团队在处理交易时没有充裕的时间,因此我们希望用户从开始使用 Vivun 平台的第一天起就能获得来自我们 AI 的指导。● 持续学习:随着市场和竞争的不断发展,平台的预测和建议能力也应不断发展。我们的机器学习模型会随着时间推移适应不断变化的动态和 Vivun 客户提交的新数据。● 可解释性:我们通过 AI/ML 工作得出的见解需要公司中的每个人都可以访问和采取行动——对数值输出(即我们的英雄分数)提供清晰简洁的解释,并就下一步应采取的措施提供规范性建议,而不是“黑匣子”解决方案。
OpenAI 于 2022 年 11 月启动的 ChatGPT 引发了关于人工智能对高等教育影响的重要讨论。当学生使用它来撰写论文时,它打破了现状。与谷歌的 Gemini 和微软的 Copilot 一样,OpenAI 的 ChatGPT 是能够模仿人类对话的强大大型语言模型 (LLM) 的典型示例。大型语言模型在识别语言模式和预测上下文单词方面表现出色,并且擅长以最少的用户输入生成连贯且相关的文本响应。通过利用其广泛的训练语言模式数据库,大型语言模型可以提供准确反映用户输入上下文的生成文本响应。凭借对语言的掌握,他们可以创作创意诗歌,撰写全面连贯的文章,深入分析主题,并有说服力地提出论点。
摘要:医疗保健对于健康生活非常重要。但是,如果您有健康问题,就很难寻求医疗帮助。建议的概念是开发一个医疗聊天机器人,该聊天机器人可以采用人工智能来分析疾病并生成与医生讨论的病情相关的必要信息。医疗聊天机器人的建立是为了降低医疗成本并改善获取医疗知识的途径。一些聊天机器人充当医疗手册,帮助患者了解自己的疾病并改善健康状况。如果用户能够诊断多种疾病并提供所需的数据,他们肯定可以从聊天机器人中受益。文本诊断机器人使患者能够参与对其药物问题的分析,并根据症状提供个性化的分析报告。因此,人们对自己的健康和个人稳定性有自己的看法。
