b'a最近的作品数量已建立在开创性的结果之上[MPP16]。有关非详细列表,请参见,例如[MPP17,BMPP18,MV20,MSV22,MSV21,MPP21,MPP21,FMS21,BMPP21,MSV21,AD \ XC2 \ XC2 \ XB4A22,DLHLP22,DLHLP22,DLHLP22,DLHLP22,ADV23,GF23,GF23,jMU24,JMU24,JMU24,JMU24,r \ \ xMU×4.424,定量代数的关键理论结果包括:声音和完整的演绎系统,由公制空间,单一和组成技术产生的免费定量代数的存在,该类别中的单个单数符合度量空间和非X型图形图,零件图,完成结果,\ x80 \ x80 \ x9C9CHSSP-x9 CHSSP-x9 CHSSP-x 9定理等。该框架的应用可以在识别MET上的有用单片中找到为\ xe2 \ x80 \ x9cfree定量定量代数\ xe2 \ x80 \ x9d monads(参见,例如,参见[,例如,[MPP16,MV20,MSV21,MSV21,MSV22])和BM METITITATION norsitation nosation nosation n of Axiantiatiant n of Axi Axi Axi Axiistic [saki Axi Axi Axi Axiists [of Axi Axi Axiist] [ BBLM18B,BBLM18A,MSV21,R \ XC2 \ XB4 24]。此外,一些作品提出了[MPP16]框架的扩展或修改。例如,[msv22]考虑了定量代数(a,d a),{op a} op \ xe2 \ x88 \ x88 \ x88 \ xce \ xa3'
摘要背景:为了将经颅电刺激 (tES) 应用于运动皮层,通常使用经颅磁刺激 (TMS) 的运动诱发电位来识别运动热点。本研究的目的是验证一种基于脑电图 (EEG) 的新型运动热点识别方法的可行性,该方法使用机器学习技术作为 TMS 的潜在替代方案。方法:在 30 名受试者执行简单的手指敲击任务时,使用 63 个通道测量 EEG 数据。从六个频带(delta、theta、alpha、beta、gamma 和 full)提取 EEG 数据的功率谱密度,并独立用于训练和测试用于运动热点识别的人工神经网络。将 TMS 识别的各个运动热点的 3D 坐标信息与我们基于 EEG 的运动热点识别方法估计的坐标信息进行定量比较,以评估其可行性。结果:TMS 识别的运动热点位置与我们提出的运动热点识别方法之间的最小平均误差距离为 0.22 ± 0.03 厘米,证明了我们提出的基于 EEG 的方法的概念验证。当仅使用连接到运动皮层中部的 9 个通道时,测量的平均误差距离为 1.32 ± 0.15 厘米,表明实际使用基于相对较少的 EEG 通道的所提出的运动热点识别方法的可能性。结论:我们证明了我们新颖的基于 EEG 的运动热点识别方法的可行性。预计我们的方法可以作为 TMS 的运动热点识别的替代方案。特别是,当使用最近开发的与 EEG 设备集成的便携式 tES 设备时,它的可用性将显著提高。关键词:运动热点、脑电图、经颅电刺激、机器学习、人工神经网络