c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
图1.Wheatley 使用的热声系统剖面图 10 图 2.带有支撑结构的三板热声耦合示意图,其中一个热电耦合在 C 和 H 处安装有连接点,用于感应耦合器之间的温差。(Wheatley 等人,1983 年) ......................................................................................... 12 图3.Garrett (1991 年) 使用的四分之一波长热声制冷机示意图。虚线表示管内的压力分布 ...................................................................................... 15 图4.用于分析的带有板和间距厚度的坐标系的扩展视图 ...................................................................................... 29 图5.该图显示了平均温度下能量通量 H(瓦特)和波长 X(m) 随频率 f(Hz)的变化 ............................................................................................. 41 图6.该图显示了图中给出的参数下声功率 W(瓦特)随频率 f(Hz)的变化。5 ........................................... 42 图7.该图显示了图5 ......................................................................................... 43 图8.该图显示了图5 ....... 44 图9.5 ....... 45 图10.11.12.该图显示了在图 5 中给出的参数下声功率 W(瓦特)随压力幅度 PI(帕斯卡)的变化。该图显示了 COP 随压力幅度的变化。在图 5 中给出的参数下 Pi(帕斯卡)。5 ......................................................... 46 图该图显示了在图 5 中给出的参数下速度 u i 随压力 Pi(帕斯卡)的变化。5 ........................................................... 47 图该图显示了在图 5 中给出的参数下能量通量 H(瓦特)随管半径 R(米)的变化。 ................................ 48 图13.该图显示了在图 5 中给出的参数下声功 W(瓦特)随管半径 R(米)的变化。5 ................................................ 49
重复使用本文根据 Creative Commons 署名-非商业-禁止演绎 (CC BY-NC-ND) 许可条款发布。此许可仅允许您下载此作品并在注明作者的情况下与他人共享,但您不得以任何方式更改本文或将其用于商业用途。更多信息和许可条款的完整内容请参见:https://creativecommons.org/licenses/
中电电力与华懋集团签署协议,启动香港首个零碳制冷机系统项目 中电电力与华懋集团(“华懋”)签署了建设-拥有-运营-移交 (BOOT) 协议,建设香港首个零碳制冷机系统。如心广场的全新水冷式空调系统将提高能源效率,并大幅减少该综合大楼的碳排放。如心广场是新界最高的建筑,占地 180,000 平方米,包括香港最大的酒店之一、办公空间、购物中心和木化石花园如心公园。根据这份为期 20 年的协议,中电电力将提供资金、设计和工程工作,将现有空调改造成节能的水冷式系统。中电电力工程师将驻扎在现场,全天候操作和维护该系统,为整个综合大楼提供无缝空调服务。华懋集团将在整个合同期内每月向中电电力支付服务费。新建制冷机组最高容量达9,300冷冻吨,由人工智能智能管理系统PlantPRO控制,利用机器学习技术收集和分析数据,进行实时监控及调整,为如心广场提供最节能的空调系统。机组连同PlantPRO系统将比现有系统减少超过五成用电量,相当于每年减少7,000吨碳排放。根据协议,如心广场制冷机组所消耗的电力将与中电控股可再生能源项目所签发的同等金额绿色电力证书相匹配,使其成为香港首个零碳制冷机组系统。此举符合华懋集团的CCG 3050+路线图,该路线图旨在到2030年将碳排放量以2020年为基准年减少不少于51.8%。
维多利亚州政府正在努力提高新建和现有住宅的能源效率。节能住宅更加舒适,供暖和制冷成本更低,有助于减少温室气体排放。空间供暖和制冷占维多利亚州住宅能源使用量的 50% 以上 1(图 1),是企业的高能耗终端用途。2 虽然空间供暖是维多利亚州家庭能源消耗的最大终端用途,但空间制冷也可对总能源使用量做出重大贡献,尤其是在商业场所。3 鼓励维多利亚州消费者升级或购买高效的空间供暖和制冷设备可以减少电力和天然气需求、温室气体排放和消费者能源费用。
钻孔热能存储系统的优化设计可以确保满足其技术经济目标。当前的设计优化方法要么采用不适合数值优化的详细建模,要么使用不考虑操作条件的简化模型。本文提出了一种面向优化的模型和非凸优化公式,与文献中的其他研究不同,它可以考虑季节性存储大小和温度对其容量、损耗、传热速率以及连接热泵或冷却器的效率的影响。该方法应用于一个案例研究,考虑了两种情况:仅存储冷却产生的热量和集成太阳能热发电。结果表明,随着电力二氧化碳强度分布、冷却需求和碳排放价格等边界条件的变化,不仅最佳季节性存储规模会发生变化,其最佳运行条件也会发生变化。在标准边界条件下,二氧化碳排放量的潜在减少量有限(最多 6.7%),但冷却需求的增加和二氧化碳强度季节性变化的增强导致排放量减少 27.1%。太阳能发电的整合率进一步提高到43.7%,而年成本则略有增加,仅为6.1%。
我们提出了一种将太赫兹 (THz) 频率量子级联激光器 (QCL) 完全集成到稀释制冷机内的方案,以便将 THz 功率定向传输到样品空间。我们描述了位于制冷机脉冲管冷却器级上的 2.68 THz QCL 的成功运行,其输出通过空心金属波导和 Hysol 热隔离器耦合到位于毫开尔文样品级上的二维电子气 (2DEG) 上,实现了从 QCL 到样品的总损耗 ∼− 9 dB。热隔离器限制了热量泄漏到样品空间,实现基准温度 ∼ 210 mK。我们观察了 QCL 在 2DEG 中引起的回旋共振 (CR),并探讨了 QCL 对制冷机所有阶段的加热影响。在低至 ∼ 430 mK 的电子温度下可以观察到由 THz QCL 引起的 CR 效应。结果表明,在稀释制冷机环境中利用 THz QCL 以及在极低温(< 0.5 K)凝聚态实验中传输 THz 功率是可行的。
利用人工缺陷技术,我们可以调整许多二维 (2D) 层状材料的能带结构和传输特性。一种原型材料系统是反点石墨烯片,其中周期性孔隙是使用纳米级聚焦离子或电子束制成的。在这里,我们研究了具有不同孔隙半径和孔隙间距的反点石墨烯样品的电导率、热电势以及冷却和制冷的有效速率。我们使用了一种考虑传输对载流子能量的敏感性的计算方法,可用于描述扩散、弹道和量子跳跃状态下的弹性和非弹性散射。我们发现,与一些传统方法相比,我们使用新计算方法得到的结果与实验数据更加一致。同样有趣的是,优化的冷却和制冷的有效速率对孔隙间距和孔隙半径的分布变化非常稳健,这意味着易于工业化和廉价制造。同样的分析和研究也可以扩展到许多其他层状材料,包括过渡金属二硫属化物(TMD)、蓝色磷烯和碲烯。
