* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X
弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 的研究人员开发出一种新型聚合物补片,它可以显著加速和简化以前费力、昂贵且耗时的受损轻型飞机部件修复过程。将这种可热成型、可回收的修补片压在受损区域,仅需 30 分钟即可完全固化。这种创新的纤维增强塑料用途广泛,可用于从航空到骨科等不同行业。修复轻型纤维复合材料部件(如用于飞机机翼、机身段、尾翼表面和舱门的部件)是一个费时、昂贵的过程,需要多个工作步骤。受损区域通常使用复杂的湿层压工艺或在表面应用纤维增强聚合物 (FRP) 或铝结构(称为双层)来修复。然而,这些方法需要较长的固化时间并需要额外的粘合剂。弗劳恩霍夫 IFAM 的研究人员现已开发出一种由动态聚合物网络(业内称为 vitrimers)制成的修补片,可将之前漫长而费力的修复过程缩短至 30 分钟。这种创新材料基于苯并恶嗪,这是一种新型热固性材料,也称为热固性材料,其真正特别之处在于,聚合塑料不会熔化,也不会像湿法层压中使用的传统树脂系统那样表现出其他行为。聚合物的动态网络过程使局部加热材料成为可能。完全固化的修补片在加热状态下可适应修复部位。在室温下,聚合物具有热固性,因此修补片不粘,储存时稳定。这节省了能源,因为修补片可以在室温下储存,不需要冷藏,从而降低了储存成本。修补片使用压力和热诱导交换反应应用于需要修复的轻质部件。它能够快速修复,30 分钟内完全固化。无需使用反应性危险材料,而传统树脂系统则必须如此。玻璃体特性使得可以在需要时移除补片,而不会留下任何残留物。“我们的无粘合剂、储存稳定的纤维增强补片可以直接修复受损的复合材料和混合结构。由于聚合物本质上是一种玻璃体,因此补片在储存过程中的表现类似于传统的热固性复合材料,但它也
功能材料。从这个方面来看,开发可扩展的方法来修改蛋白质的性质非常重要。蛋白质在材料科学中应用的一个有趣平台是淀粉样蛋白和淀粉样蛋白原纤维。此类原纤维是高度各向异性的物体,通常直径为 5-10 纳米,长度在微米范围内,[6] 其详细结构取决于特定蛋白质和原纤维化条件。[7] 原纤维由含有延伸 β 片层的原丝构成,这会导致形成染料可结合的疏水沟。虽然体内形成的淀粉样蛋白原纤维与多种疾病有关,包括阿尔茨海默病和帕金森病,[8] 但近年来已发现一系列功能性淀粉样蛋白,生物体将淀粉样蛋白用于建设性目的。 [8] 此类功能性淀粉样蛋白可为新型材料的开发提供灵感,最近,人们利用转基因大肠杆菌 ( E. coli ) 来制备可用作生物塑料的生物膜。[9] 此外,与疾病无关的蛋白质可以在体外形成原纤维,从而产生所谓的淀粉样原纤维。[10] 在下文中,我们将此类材料称为蛋白质纳米原纤维 ( PNF )。PNF 可以由多种蛋白质形成,其中许多蛋白质可大量获得且成本低廉(例如来自植物资源或工业侧流)。[11] 本文采用鸡蛋清溶菌酶 ( HEWL ) 作为蛋白质来源。HEWL 可大量获得(作为食品添加剂 E1105),而且成本相对较低。通过加热酸性 HEWL 水溶液,蛋白质很容易转化为溶菌酶 PNF,[10c,d] 下文缩写为 LPNF。由于其高长宽比,PNF 显示出一系列有趣的固有结构特性,例如极易形成凝胶或液晶相。[12] 一个众所周知的挑战是,当 PNF 组装成薄膜等宏观材料时,它们往往很脆。[13] 因此,最近一个有趣的发展是证明通过在聚乙烯醇 (PVA) 和/或甘油 (GLY) 存在下形成 PNF(源自植物蛋白或食物蛋白),可以制备具有坚固机械性能的可生物降解薄膜。[14] 此外,用发光分子功能化的 PNF 可以与 PVA 和 GLY 混合以形成独立的 LED 涂层。 [15] PNF 通常表现出新兴的光学特性,例如固有荧光和增加的双光子吸收。[16] 然而,为了充分利用 PNF 在光学应用方面的潜力,通常需要用有机荧光团对 PNF 进行功能化。[17] 大多数现成的有机荧光团都具有
摘要:塑料在现代生活中发挥着重要作用,目前塑料回收利用的发展要求很高且具有挑战性。为了缓解这一困境,一种选择是开发在整个材料生命周期中与环境兼容的新型可持续生物塑料。我们报道了一种由天然 DNA 和生物质衍生的离子聚合物制成的可持续生物塑料,称为 DNA 塑料。可持续性涉及 DNA 塑料的生产、使用和报废选择的所有方面:(1)原材料来自生物可再生资源;(2)水处理策略对环境友好,不涉及高能耗、使用有机溶剂和产生副产物;(3)实现可回收和非破坏性利用,显着延长塑料的使用寿命;(4)废塑料的处理遵循两条绿色路线,包括废塑料的回收利用和温和条件下酶引发的可控降解。此外,DNA塑料可以“水焊接”成任意设计的产品,例如塑料杯。这项工作提供了一种将生物基水凝胶转化为生物塑料的解决方案,并展示了DNA塑料的闭环回收,这将推动可持续材料的发展。■ 简介
17。在这里,我们表明使用DNA的理性设计可以大大扩展膜纳米孔的结构和功能范围。我们的设计策略将DNA双链体捆成成孔亚基,它们会模块化形成可调的孔形状和最高数十纳米的管腔宽度。可以选择附加识别或信号的功能单元。通过拨入基本参数,我们使用广泛使用的研究和手持式分析设备通过电直接单分子传感来证明定制毛孔的实用性和潜力。设计师纳米孔说明了DNA纳米技术如何提供功能性生物分子结构,用于合成生物学,单分子酶学和生物物理分析以及便携式诊断和环境筛查。膜毛孔的管腔定义了它们在生物学和技术中的功能。在纳米孔传感中,通道宽度控制单个分子的入口和通过,并影响分析物阻断通道管腔18-
近年来,大多数人主要对时尚的私密服装感兴趣,而不是考虑健康方面。由于繁忙的日程安排,他们穿上这些服装持续时间更长,面临许多皮肤疾病。然而,只有一个特定的消费者寻求抗菌,抗氧化剂,抗炎症和抗异常纺织品 /服装,能够促进更健康的生活方式并保留自尊心3。人们认为,身体糖果是围绕crot,生殖器,腹股沟和腋窝等地方散发出来的不良气味的主要原因。然而,发现我们体内的一些细菌会喂食或消耗汗水,从而导致汗水中的酸分解并引起体味。另一方面,某些疾病或荷尔蒙变化也会触发体味4。这样的气味主要是有机化合物,其中包含不同的官能团和化学结构。,例如胺,醇,醛酮苯酚等。5。另一方面,大蒜,洋葱,酒精和某些药物的消耗也可以增强人体产生的气味6,7。某些条件(例如运动,运动和努力工作)会产生更多的汗水,倾向于细菌生长,从而引起气味。
在KSA的Jubail公司的P Lant上,首先是由高级再生塑料制成的KSASABIC,NAPCO和FONTE认证的圆形SABIC®PE
摘要钛合金由于具有出色的机械和摩擦学特性而在许多科学,工程和技术领域都使用。调查目标是通过应用添加剂过程(例如选择性激光熔化和加强生物硅化钛合金加强钛合金)来开发一种创新的综合材料,以供汽车行业使用。生物 - 硅(BS)纳米颗粒是使用钙叶酸的农业废物作为增强剂提取的。工业级钛(IGT)合金纳米复合材料用于制造具有生物 - 硅纳米颗粒的合金增强0、5、10和15%的合金。研究了IGT/BS纳米复合材料的机械性能,例如微硬度,拉伸(最终和产量)强度和抗压强度。根据调查的结果,15wt。%IGT/BS纳米复合材料具有更好的机械特征。L9 Taguchi的正交阵列用于说明磨损试验。ANOVA用于优化结果。ANOVA用于确定理想的过程参数,从而导致最低的磨损速率和摩擦系数(COF)。调查结果表明,施加的载荷为30 N,滑动速度为4 m/s,滑动距离为2000 m可能会达到最低的磨损。根据ANOVA,负载是影响磨损的最重要因素(30%)。
可拉伸电子产品在医学、传感和机器人领域的应用越来越受到关注。当前的可拉伸材料要么是本质上可拉伸的,要么是图案化为可拉伸结构,要么是通过形成某种可拉伸材料和具有某些所需特性(例如高导电性)的刚性材料的复合材料而制成的。然而,文献中缺乏可拉伸磁性材料,而将可拉伸性和磁性相结合的设备仅限于使用串行制造工艺,例如将毫米级磁体嵌入聚合物基质中。在这项研究中,我们介绍了一种可拉伸复合硬磁墨水,该墨水由钡六铁氧体纳米颗粒与 9510 单组分环氧灌封化合物和二(丙二醇)甲醚混合而成。然后使用丝网印刷方法,将该墨水用于制造磁应变传感器,作为材料和工艺的概念验证。结果表明,可以制成一种可拉伸的硬磁墨水,其由钡六铁氧体颗粒夹杂物提供 20 kA/m 的剩磁,并由环氧树脂提供至少 100% 应变的拉伸性。
摘要Kebonagung分区,Sidoharjo District,Wonogiri Regency是Wonoagung Wonogung Wonogiri有机农业协会(PPOWW)地点。Mitra是一个从事有机大米和牛种植的组织。将牛粪便转化为有机肥料,尤其是含有生物剂的液体肥料,是用于防止环境污染的废物消除策略之一。有机肥料材料来源的营养含量各不相同。高质量的有机肥料符合印度尼西亚共和国农业部建立的有机肥料标准。只有一些生产商才意识到有机肥料的标准质量要求。有必要分析有机肥料产品的养分含量,以确定有机肥料的质量是否出色。进行了对伴侣条件,材料制备(有机肥料)的初步调查以及对肥料含量的分析。有机肥料的C/N比为8.41,其pH值为7.6。分析结果表明,Wonoagung wonogung wonogiri有机农业协会的有机肥料产品符合液体有机肥料质量标准。这种情况表明有机肥料生产中使用的原材料具有高质量,并且已经遵循适当的程序。将生物剂添加到有机肥料的生产中可以提高成品的质量。