近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
作者的完整清单:本杰明·伯里(Bourrie);艾伯塔省大学,农业食品和营养科学原谅,安德鲁;艾伯塔省大学,亚历山大农业食品与营养科学Makarowski;艾伯塔省大学,保罗农业食品与营养科学科特; Teagasc Food Research Center Moorepark Richard,Caroline;艾伯塔省大学,本杰明,农业食品和营养科学愿意;艾伯塔大学,农业食品与营养科学
图1:纳米壳合成过程和稳定性验证的示意图。(a)通过三步固定过程在细胞膜上合成DNA纳米壳,包括:(i)A'-SSDNA启动器在糖科利克斯上的固定化; (ii)杆A(绿色)通过ssDNA杂交与A'-ssDNA结合,以及(iii)杆B(蓝色)通过H-SSDNA在杆A和H'ssDNA上的杂交在杆上的rod a和h'-ssDNA杂交的结合和交联。杆A和B的直径约为7nm,长度约为400nm。三个A-SSDNA(蓝色),14 s-ssDNA(黑色)和14 h-ssDNA(黄色)均匀分布在Rod A上。14 s-ssDNA(黑色)和14 h'-ssDNA(黄色)均匀分布在杆B上。所有ssDNA悬垂都是22对。比例尺:500 nm。(b)单个DNA棒的琼脂糖凝胶电泳,以及30分钟在37°C下孵育30分钟后杆的混合物。(c)单个DNA棒和两种类型的细胞培养基中的凝集的琼脂糖凝胶电泳研究。杆A和棒混合物。(d)通过铜免费点击化学,将DBCO标记的A'-SSDNA启动器固定在叠氮化物细胞表面糖脂上。
摘要 — 偏置温度不稳定性 (BTI) 和热载流子退化 (HCD) 是主要的老化机制,经常通过晶体管测量或基于反相器 (INV) 的环形振荡器 (RO) 测量进行研究。然而,大规模数字电路通常用标准单元(如逻辑门)制造。在可靠性模拟流程中(例如,基于 SPICE 的标准单元特性与退化晶体管)必须对标准单元做出许多假设(例如负载电容、信号斜率、老化模型的不确定性等),并且可能导致较高的模拟不确定性。在这项工作中,我们建议用硅中的标准单元振荡器测量来验证这种标准单元特性。为此,我们提出以下新颖的贡献:1)首次基于从处理器中提取的逻辑路径对异构振荡器(一个 RO 中的多种不同单元类型)进行 BTI 和 HCD 测量。 2) 第一项工作探索了 BTI 和 HCD 对包含组合标准单元的振荡器的影响,即包含多个逻辑门的单个单元(例如与-或-反相器 (AOI) 单元和或-与-反相器 (OAI))和执行复杂操作(例如全加器)的单元。
水污染是许多常见病例的令人震惊的问题之一,例如海上油轮的漏油以及含有高水平的重金属和染料的废水,尤其是在纺织工业中。这些情况严重影响了水生态系统的发展以及周围人口,动植物的健康。最近,由于它们在适当的激活后能够吸收大量污染物的能力,因此被认为是处理水问题的有效解决方案。在这项研究中,我们概述了由纤维素和壳聚糖制成的多孔复合材料,这是发展中国家农业和渔业副产品中的两个巨大资源。混合纤维素和壳聚糖的泡沫,水凝胶珠,膜和气凝胶说明了废水中油,溶剂,染料和重金属的有效吸收。本审查介绍了上述水污染问题的状态;从生物废物中提取的两种天然成分的丰度;分析和比较不同方法,以合成纤维素/壳聚糖多孔复合材料及其物理化学特征。最后,讨论了水处理中多孔复合材料的应用和前瞻性观点,以显示出开发高级和功能材料的有希望的研究方向。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
功能材料。从这个方面来看,开发可扩展的方法来修改蛋白质的性质非常重要。蛋白质在材料科学中应用的一个有趣平台是淀粉样蛋白和淀粉样蛋白原纤维。此类原纤维是高度各向异性的物体,通常直径为 5-10 纳米,长度在微米范围内,[6] 其详细结构取决于特定蛋白质和原纤维化条件。[7] 原纤维由含有延伸 β 片层的原丝构成,这会导致形成染料可结合的疏水沟。虽然体内形成的淀粉样蛋白原纤维与多种疾病有关,包括阿尔茨海默病和帕金森病,[8] 但近年来已发现一系列功能性淀粉样蛋白,生物体将淀粉样蛋白用于建设性目的。 [8] 此类功能性淀粉样蛋白可为新型材料的开发提供灵感,最近,人们利用转基因大肠杆菌 ( E. coli ) 来制备可用作生物塑料的生物膜。[9] 此外,与疾病无关的蛋白质可以在体外形成原纤维,从而产生所谓的淀粉样原纤维。[10] 在下文中,我们将此类材料称为蛋白质纳米原纤维 ( PNF )。PNF 可以由多种蛋白质形成,其中许多蛋白质可大量获得且成本低廉(例如来自植物资源或工业侧流)。[11] 本文采用鸡蛋清溶菌酶 ( HEWL ) 作为蛋白质来源。HEWL 可大量获得(作为食品添加剂 E1105),而且成本相对较低。通过加热酸性 HEWL 水溶液,蛋白质很容易转化为溶菌酶 PNF,[10c,d] 下文缩写为 LPNF。由于其高长宽比,PNF 显示出一系列有趣的固有结构特性,例如极易形成凝胶或液晶相。[12] 一个众所周知的挑战是,当 PNF 组装成薄膜等宏观材料时,它们往往很脆。[13] 因此,最近一个有趣的发展是证明通过在聚乙烯醇 (PVA) 和/或甘油 (GLY) 存在下形成 PNF(源自植物蛋白或食物蛋白),可以制备具有坚固机械性能的可生物降解薄膜。[14] 此外,用发光分子功能化的 PNF 可以与 PVA 和 GLY 混合以形成独立的 LED 涂层。 [15] PNF 通常表现出新兴的光学特性,例如固有荧光和增加的双光子吸收。[16] 然而,为了充分利用 PNF 在光学应用方面的潜力,通常需要用有机荧光团对 PNF 进行功能化。[17] 大多数现成的有机荧光团都具有
1. 引言 活性炭是一种具有高表面积和孔隙率的碳质材料。它来源于碳含量较高的富碳有机前体,例如煤、聚合物或生物质,在高温下对这些材料进行物理或化学活化以增加碳含量[1]。换句话说,活性炭是通过热分解碳含量较高的富碳有机材料获得的。文献中明确定义活性炭是通过富碳有机材料的物理或化学活化获得的[2]。简而言之,物理活化可以通过单阶段[3]或两阶段[4]过程进行。在常用的两阶段过程中,富碳材料的碳化是在惰性气氛中的反应器中实现的,然后使用CO 2 、蒸汽、空气或它们的混合物进行活化以增加表面积和孔隙率[5]。化学活化工艺是一个单阶段工艺,其中将碳质材料与活化剂(例如氢氧化钾、磷酸和氯化锌)混合,然后在惰性气氛下施加高温获得活性炭 [1]。其目的是通过使用任一活化工艺来合成高表面积和高孔隙率的活性炭材料。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
采用溶剂铸造法,以铁屑废料为填料,开发聚苯乙烯复合材料,旨在提高机械、晶体学和微观结构性能,以满足特定用途。根据 ASTM D638-10 标准进行拉伸试验。还进行了 X 射线衍射 (XRD) 分析和微观结构分析。杨氏模量随填料浓度 (0 – 15 wt%) 的增加而增加 (从 335.2 N/mm 2 增加到 1131.3 N/mm 2 ),断裂伸长率则反之亦然 (从 4.9 mm 增加到 1.6 mm)。XRD 显示,铁屑颗粒和聚苯乙烯基树脂 (PBR) 基质之间存在良好的结构相互作用。该复合材料分别结合了聚苯乙烯和铁屑的无定形和晶体性质。也没有观察到化学反应,但聚苯乙烯基体中形成了协同结构增强。微观结构分析表明,铁屑颗粒在聚苯乙烯基体中分散性良好,分布均匀;填料质量分数为15%的复合材料界面黏附性最好,颗粒-基体体系的混合比例适宜。