本报告是关于添加剂制造的概念和过程的介绍。使用添加剂制造技术,在该项目的金属(钢)上进行了模拟。在对金属粉末床添加剂制造过程的模拟中,我们得到了主要发现,例如温度场,残留应力和熔体池特性,这些特征发生在金属中。选择性激光烧结是一种著名的金属添加剂制造工艺,用于在床上融化粉末金属,并形成一块所需材料的金属板,并通过一层形成一层,并融化金属粉末。基于许多审查的研究,在将仿真转换为增材制造业工业应用工具的背景下,确定了许多未来的方向。应开发出智能建模方法,必须在增材制造模拟中进一步表征和标准化材料及其特性,并且必须开发模拟,并且需要成为现代数字生产链的一部分。
摘要 为了帮助制造企业实现人工智能 (AI) 的价值,我们开始了为期六年的研究和实践,以增强流行且广泛使用的 CRISP-DM 方法。我们通过添加“操作和维护”阶段以及嵌入基于任务的框架将任务与技能联系起来,将 CRISP-DM 扩展为 AI 解决方案的连续、主动和迭代生命周期。我们的主要发现涉及操作和维护 AI 解决方案和管理 AI 漂移的艰难权衡和隐性成本,以及确保在整个 CRISP-DM 阶段中存在领域、数据科学和数据工程能力。此外,我们展示了数据工程如何成为 AI 工作流程中必不可少但经常被忽视的一部分,对这三种能力的参与轨迹提供了新颖的见解,并说明了如何将增强的 CRISP-DM 方法用作 AI 项目的管理工具。
澳大利亚食品和饮料(F&B)制造业的进步对于促进所有企业的可扩展性,竞争力和弹性供应链而言至关重要。主要由中小型企业(中小型企业)组成,但著名的实体,例如火星,贝加,雀巢和可口可乐在澳大利亚建立了制造设施,其能力和投资在研发(R&D)方面的投资不同。该行业面临着与供应链中断,消费者偏好,监管合规性,成本压力,可持续性,技术整合以及确保未来劳动力的挑战。这些挑战需要行业和政府之间的长期持续投资和合作伙伴关系,以支持预竞争性的研究和发展,有效的知识和技术转移过程以及一种适应行业不断变化的能力需求的教育系统(2)。
在执行任务发布之前,决定政府,工业和学术界的各种利益相关者应该提出一份联合报告,概述了该国研究和技术开发的现状,并为国家研究和创新路线图提供了建议,以支持绿色氢生态系统。Accordingly, a drafting committee was constituted with experts and representatives from Office of Principal Scientific Advisor, Council of Scientific & Industrial Research, Ministry of Petroleum and Natural gas, NITI Aayog, Department of Science & Technology, Department of Atomic Energy, Defense Research and Development Organization, Indian Space Research Organization, Indian Oil Corporation Ltd., Indian Institute of Science, IIT Delhi, IIT Madras, IIT Bombay, IIT Kharagpur,IIT Kanpur,IIT ROORKEE,IIT GUWAHATI,IIT海得拉巴,中央电动化学研究所,国家化学研究所,国家化学实验室,NTPC- NETRA - NETRA,国家太阳能研究所,印度工业联合会,印度氢联盟的联合会,印度自然工业,印度自然工业,环境,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构,国际机构。资源研究所。新和可再生能源部联合秘书是委员会的召集人。
沉积过程的一种非常特殊的情况是所谓的外延沉积,或者只是外延。该专业局部旨在将材料沉积到单晶模板上,生长为单晶层。半核心设备制造链中的第一步之一是在空白硅晶片上沉积外延硅。这是在外交过程中完成的。经常运行这些过程,一次仅处理一个晶圆(即单个晶圆处理)或少数数字(即多窃听或迷你批次)。
摘要 - 金属制造过程的未来,例如激光切割,焊接和添加剂制造,应依赖于行业4.0支头的智能系统。这样的数字创新确实正在推动机械制造商进行深刻的转变。是根据针对特定过程设计和优化的定制机器,雄心勃勃是利用开放性和大量的工业机器人可用性,以提高多流程实现的灵活性和可重新配置。挑战在于,机械构建者将自己转变为高知名度专业的过程驱动的机器人集成器,能够用智能传感和认知方面的过程控制器杠杆优化机器人运动。这项工作描述了BLM集团和Politecnico di Milano的多年合作,在CNR的支持下,重点是部署完整的机器人工作站,其特征是机器人控制和运动计划与制造过程的完整整合。索引术语 - 指导的能量沉积,激光金属拆卸,添加剂制造的设计,CAD/CAM
摘要 :增材制造 (AM) 是一项尖端技术,可提供高达 100% 的材料效率和显著的重量减轻,这将对飞机燃料消耗产生积极影响,并且具有很高的设计自由度。因此,许多航空航天公司都在考虑实施 AM,这要归功于这些好处。因此,本研究的目的是帮助航空航天组织在不同的 AM 技术中进行选择。为此,通过半结构化访谈收集了 (8) 位 AM 领域专家的原始数据,并与二手数据进行交叉引用,以确定在选择用于航空航天应用的 AM 设备时需要考虑的关键因素。专家们强调了四种 AM 技术:激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EBPBF)、线弧 AM (WAAM) 和激光金属沉积 (LMD),认为它们最适合航空航天应用。本研究的主要成果是开发了一个比较框架,帮助公司根据其主要业务或特定应用选择 AM 技术。
1。产品复杂性指数:生产产品所需的生产知识的多样性和复杂性。PCI值高的产品(最复杂的产品只能生产)包括电子和化学品。PCI值低的产品(几乎所有国家都可以生产的最不复杂的产品)包括原材料和简单的农产品。
