摘要 第二代高温超导 (HTS) 带材已广泛用作储能材料,例如超导磁能存储 (SMES) 设备。为了增强载流特性,这些系统通常在接近涂层导体的临界电流下运行;因此,可能会产生热点,这可能导致超导体淬火。为了防止热点的出现并减少故障量,本文努力提高正常区域传播速度 (NZPV)。超导体和稳定层之间的界面电阻已被证明是产生大量 NZPV 的关键,在故障情况下,界面电阻可以充当电流分流器。通过在超导层和稳定层之间添加高阻层,磁带的结构略有修改,其中各种界面电阻已用于预测 10 厘米长度的 HTS 磁带之间的温度分布。使用 COMSOL 创建了 2D 数值模型来评估 2G 超导磁带的 NZPV 和温度分布。已经得出结论,通过使用相当大的界面电阻来防止超导磁带失超,可以实现更大的 NZPV。关键词:HTS 磁带,正常区域传播速度,界面电阻,失超,HTS 电缆,SFCL,SMES。1.简介 涂层导体广泛应用于电力应用,因为它们能够承载巨大的电流,同时在临界电流附近有效运行。涂层导体已在几乎所有电力应用中取代了铜导体,包括电缆、电动机、发电机、变压器、MRI、NMR、故障电流限制器和 SMES 系统,因为它们在管理电流方面更高效,占用的空间比传统设备更少。当故障电流限制和储能设备在临界电流附近运行时,可能会形成热斑,导致超导体失超。如今,HTS 电缆的发展也受到关注,载流电缆的设计负载系数更大(接近临界电流),以最大限度地提高其载流能力。然而,过大的电流会因发热而导致不平衡,而冷却不足会导致热点,最终导致胶带热失超。这个话题尚未解决,许多研究小组正在
电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
摘要 P-糖蛋白(P-gp)在癌细胞中高表达可导致多药耐药(MDR),抗癌药物与P-gp抑制剂联用是逆转癌症MDR治疗的一种有前途的策略。本研究建立了一种无标记、无洗涤剂的系统,结合表面等离子体共振(SPR)生物传感器和苯乙烯马来酸(SMA)聚合物膜蛋白(MPs)稳定技术来筛选潜在的P-gp抑制剂。首先,利用SMA聚合物从MCF-7/ADR细胞中提取P-gp,形成SMA脂质体(SMALPs)。随后,将SMALPs固定在SPR生物传感器芯片上,建立P-gp抑制剂筛选系统,并测定P-gp与小分子配体的亲和力。方法学考察证明该筛选系统具有良好的特异性和稳定性。从50个天然产物中筛选出9个P-gp配体,并测定了它们与P-gp的亲和常数。体外细胞验证实验表明,粉防己碱、防己诺林碱、前花素B、新黄芩素和淫羊藿苷可以显著增加MCF-7 / ADR细胞对阿霉素(Adr)的敏感性。此外,粉防己碱、前花素B和新黄芩素可以通过抑制P-gp的功能来逆转MCF-7 / ADR细胞的MDR。这是首次将基于SMALPs的稳定化策略应用于SPR分析体系。SMA聚合物可以将P-gp保留在天然脂质双层环境中,从而保持P-gp的正确构象和生理功能。所开发的系统可以快速