背景:探讨自互补重组腺相关病毒3(scrAAV3)载体靶向肝癌及非侵入性监测肝癌基因治疗的可行性。材料与方法:构建scrAAV3-HSV1-TK-kallistatin(ATK)基因药物,其中包含疱疹病毒胸苷激酶(HSV1-TK)报告基因和人内源性血管生成抑制剂(kallistatin)基因,用于基因表达的非侵入性成像。建立裸鼠肝癌皮下异种移植瘤模型,进行正电子发射断层扫描/计算机断层扫描(PET/CT)成像。ATK组经尾静脉注射ATK基因,2周后注射显像剂,注射显像剂1小时后行PET/CT显像。对照组注射与ATK基因药物等量的磷酸盐缓冲液。HE染色对肿瘤切片进行病理观察。采用免疫荧光、实时定量PCR和Western印迹法检测HSV1-TK和激酶抑素的表达。结果:ATK组在PET/CT显像上的放射性活性明显高于对照组。ATK组和对照组左前肢18F-FHBG摄取值分别为0.591±0.151%和0.017±0.011%ID/g(n=5)(P<0.05)。注射ATK基因药物后,成功检测到皮下移植瘤中HSV1-TK和激酶抑素的mRNA和蛋白表达。体外分析显示,ATK组和对照组之间HSV1-TK和激酶抑素的表达差异有统计学意义(P<0.05)。结论:scrAAV3载体具有较强的肝癌靶向能力,利用ATK基因药物可以实现肝癌的靶向、无创监测的基因治疗。
综合性先天缺陷是罕见的疾病,可以表现为多效性合并症。主要的例子是罕见的先天性心脏和心血管异常,可能伴随前肢缺陷,肾脏疾病等。这种多器官缺陷是否共享发展联系仍然是与受影响患者的诊断,治疗干预和长期护理有关的关键问题。心脏,内皮和血统从外侧板中的中胚层(LPM)共同发展,这也携带着祖细胞的祖细胞,用于肢体结缔组织,肾脏,间皮和平滑肌。LPM的这种发育可塑性在不同后代谱系中的多种型祖细胞和共享转录因子表达上发现,具有解释罕见的先天性疾病中看似截然不同的综合缺陷的潜力。将患者基因组测序数据与模型有机体研究结合在一起,已经为复杂的LPM相关的先天缺陷(例如心脏病综合症)提供了丰富的见解。在这里,我们总结了早期LPM模式中的发育和已知引起疾病的机制,解决这些过程中的缺陷如何驱动多器官合并症,并概述了如何通过LPM相关疾病的疾病来概述几种具有复杂合并症的心血管和造血性出生缺陷。我们还讨论了将患者测序,数据聚集资源和建模有机体研究整合到机械学解码先天性缺陷的策略,包括潜在的LPM相关孤儿疾病。最终,将复杂的先天性表型与常见的LPM起源联系起来,为发现发育机制提供了一个框架,并预测先天性疾病的合并症影响了心血管系统及其他地区。
中脑乳突多巴胺能神经元的变性是帕金森氏病(PD)的病理标志。化合物的外围递送以阻止或减慢这种多巴胺能变性是一个关键的治疗目标。组蛋白脱乙酰基酶(HDAC)酶(关键表观遗传调节剂)在PD模型中表现出治疗前景。但是,由于有几类HDAC(Classi-IV),因此特定类别的抑制对于确保目标特异性很重要。在这里,我们检查了IIA类HDAC抑制剂TMP269的神经保护潜力。我们表明,TMP269在SH-SY5Y细胞和培养的大鼠腹脑中脑多巴胺能神经元中受到6-羟基多巴胺(6-OHDA)诱导的神经突损伤的影响。我们发现TMP269上调了SH-SY5Y细胞中神经营养因子BMP2和BMP-SMAD依赖性转录信号传导,这对于其针对6-OHDA诱导损伤的神经保护作用是必不可少的。此外,周围连续输注0.5 mg/kg的TMP269通过迷你渗透泵7天,减少了纹状体6-OHDA给药引起的前肢损伤。TMP269还保护了Nigra及其纹状体6-OHDA诱导的神经变性的底层中的多巴胺能神经元,并防止了6-OHDA在Vivo中的IBA1阳性微胶质细胞的数量增加,IBA1阳性微胶质细胞的数量增加。TMP269还防止了BMP2,PSMAD1/5和乙酰化组蛋白3水平的6-OHDA诱导的降低,并且它反转了6-OHDA诱导的核HDAC5在本次Nigra的多巴胺能神经元中核HDAC5的增加。这些数据增加了越来越多的证据体系,即IIA类特异性HDAC抑制剂可能是感兴趣的外围递送的药理学剂,其目的是在PD中进行神经保护。
神经性疼痛发生在患有影响躯体感觉系统的病变或疾病的人身上。它存在于 7% 的普通人群中,在多达 40% 的病例中,一线和二线治疗可能无法完全起效。神经调节方法通常用于那些不能耐受或对常规药物治疗没有反应的患者。这些方法可以通过手术(侵入性)或非侵入性方式实施。侵入性神经调节技术是第一个用于治疗神经性疼痛的技术。其中包括脊髓刺激 (SCS),即在脊髓上植入硬膜外电极。一些指南建议使用它来治疗周围神经性疼痛。虽然最近的研究对其疗效提出了质疑,但其他研究提供了有希望的数据,这得益于技术、电池能力、编程算法和软件开发的进步。深部脑刺激 (DBS) 是另一种成熟的神经调节疗法,常用于治疗运动障碍;然而,它在疼痛管理中的作用仍然仅限于特定的研究中心。这不仅是因为文献中对其功效的质疑结果不一,还因为小规模试验探索了几种不同的大脑目标,从而影响了这些研究之间的比较。迄今为止,文献中描述的主要目标是中脑导水管周围灰质、丘脑后部、前扣带皮层、腹侧纹状体/内囊前肢和岛叶等结构。SCS 和 DBS 的使用原理、机制背景和实验研究的不同支持程度。本综述旨在介绍它们的方法学细节、镇痛的主要作用机制及其在神经性疼痛患者管理中的地位,以及它们的特殊性、有效性、安全性和局限性。© 2024 作者。由 Elsevier Masson SAS 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
产前暴露于高度的母体炎症与不良的神经发育结果有关,包括非典型大脑成熟和精神疾病。对于经历社会经济劣势的母亲来说,免疫激活可能是这种环境困境所固有的慢性压力的产物。虽然越来越多的临床前和临床证据表明新生儿大脑发育改变与宫内炎症状态增加之间存在联系,但社会经济劣势对神经免疫串扰产生不同影响的潜在机制仍不清楚。在当前的研究中,我们在 320 对因贫困而过度抽样的母婴二元组中调查了社会经济劣势、妊娠期炎症和新生儿白质微结构之间的关联。我们分析了怀孕期间母亲血清中四种细胞因子(IL-6、IL-8、IL-10、TNF-α)的水平与后代白质微结构和社会经济劣势的关系。较高的母亲平均 IL-6 与非常低的社会经济地位(SES;INR < 200% 贫困线)、较低的新生儿皮质脊髓束各向异性分数(FA)和较低的钩状轴向扩散率(AD)相关。没有其他细胞因子与 SES 相关。较高的母亲平均 IL-10 与胼胝体和皮质脊髓束的较低 FA 和较高的径向扩散率 (RD)、较高的视辐射 RD、较低的钩状 AD 以及下额枕束和内囊束前肢的较低 FA 相关。SES 调节了妊娠期间母亲平均 TNF- α 水平与新生儿白质扩散率之间的关系。当这些相互作用被分解时,模式表明这种关联在非常低 SES 的新生儿中是显著和正相关的,而 TNF- α 与下扣带 AD 呈显著的负相关。相比之下,在条件较好的新生儿(SES 从低到高 [INR ≥ 200% 贫困线])中,TNF-α 与上扣带回 AD 呈显著正相关。总之,这些发现表明,产前细胞因子暴露与白质微结构之间的关系因 SES 的不同而不同。这些模式与妊娠期炎症对白质发育的影响因子宫内基础资源的可用性而不同这一情景相一致。
在本期期刊中,Denys 等人 (1) 描述了 70 名患有严重难治性强迫症 (OCD) 的患者接受双侧内囊腹侧前肢 (vALIC) 深部脑刺激 (DBS) 治疗的反应。这是迄今为止报道的规模最大的关于 DBS 治疗强迫症的队列研究,其包括详细的临床结果和安全性数据,使作者得出结论,vALIC 对于患有严重慢性强迫症且对多种药物以及暴露和反应预防疗法均无反应的患者通常是有效且安全的。在 12 个月的随访中,52% 的患者被归类为“有反应者”,17% 被归类为“部分有反应者”,这是根据耶鲁-布朗强迫症量表 (Y-BOCS) (2) 评分分别下降 35% 和 25% 2 34% 确定的。 35% 是 DBS 的更严格标准,其侵入性需要更高的标准,但 25% 的减少也被认为是临床试验中可接受的反应测量标准 (3)。结合这两类患者,69% 的患者表现出有意义的临床改善。另一方面,31% 的患者强迫症症状没有缓解。这项研究进一步证明了 DBS 对难治性强迫症患者通常是安全且耐受性良好的证据 (4, 5)。不良事件被归类为与手术、硬件或编程相关。在 11 起严重不良事件中,两名患者发生了涉及设备组件的术后感染,需要在几个月后取出并重新植入。六名患者需要进行修复手术以纠正电极错位。重要的是,没有报告脑内出血或癫痫发作。有三次自杀未遂,没有后遗症,只有一次被归类为与刺激变化有关,据报道,一名患者对 DBS 的反应感到失望。39% 的患者出现短暂性轻躁,同时伴有激动 (30%) 和冲动 (19%)。目前尚不清楚作者使用的轻躁一词是否与欢笑反应同义,轻躁是指持续数天的具有临床意义的情绪障碍,即在 DBS 编程期间立即引发微笑/笑声和欣快感。
背景营养不良,体重减轻和肌肉浪费在前肠癌(食管,胃,胰腺,肝脏和胆管)的患者中很常见,并且与不良临床结局有关。然而,对于这些在化学疗法期间这些患者中发生的身体组成的变化及其影响及其影响临床结局,几乎不了解。患者和方法对2012年至2016年之间接受化疗的成年癌症患者进行了前瞻性研究。计算机断层扫描图像的横截面骨骼肌区域(SMA)和脂肪组织区域(ATA)在两个时间点[间隔118天(IQR 92 - 58天)]。使用配对t检验检查了SMA和ATA的纵向变化。肌肉减少症和低肌肉衰减(MA)使用已发表的切点定义。COX Pro-of-armentational危害模型用于估计关键预测因子的死亡率危害比率。结果总共包括225例过渡性癌症患者(男性中位66岁)。基线时,肌肉减少症为40%,49%的MA低,而62%的患有癌症恶病质。纵向分析(n = 163)显示SMA的显着降低[6.1 cm 2(3.9%)/100天,p <0.001]。与接受姑息化疗的患者相比,接受新辅助化学疗法治疗的患者在SMA和骨骼肌质量中的损失更大[6.6 cm 2(95%,固定间隔,CI:10.2至3.1),p <0.001和1.2 kg(95%ci:1.8至0.5),p <0.001和1.2 kg(95%至0.5),p <0.001,p <0.001。基线时肌肉减少症和低MA都不与降低的生存有关。SMA> 6.0%/100天(最高第四)独立预测接受姑息化疗的患者的总体存活率[危险比:2.66,(95%CI:1.42至4.97),p = 0.002]。结论患有前肢癌的患者,尤其是那些接受新辅助化疗治疗的患者,在化学疗法期间经历了肌肉的显着损失。高水平的SMA损失是通过姑息化疗治疗的患者的存活率降低的预后。稳定或增加肌肉质量和影响结果的多模式干预需要进一步研究。
昆虫肠道内的微生物群对其宿主起有益的作用,例如促进消化和从饮食中提取能量。非洲棕榈象鼻虫(APW)生活在内部,并以高木质素树干为食。因此,他们的胆量可以藏有大量降落木质素的微生物社区。在这项研究中,我们旨在探索APW幼虫肠道内的细菌群落,特别是在各个肠道段中木质素降解的可能性方面,作为确定采矿细菌细菌木质素降解酶的生存能力的第一步,以使生物体生物素生物素生物素生物群生物体生物群生物体至生物群生物群至生物群生物群至生物素的生物分解。从APW幼虫的前身,中肠和后肠上提取细菌宏基因组DNA,并使用Illumina Miseq平台对16S rRNA基因的V3 -V4高变量区域进行了测序。对生成的数据进行了分析和分类分类,以鉴定肠道群落内的不同细菌系统型累积和每个肠道细分市场。然后,我们确定了每个幼虫肠室内与木质素降解相关的细菌的存在,多样性和丰度,作为建议木质素降解最多的肠段的基础。所有序列均分类并属于细菌王国。FIREICITES(54.3%)和蛋白杆菌(42.5%)是肠内最优势的门,随后是杆菌(1.7%)和静脉细胞杆菌(1.4%)。前身和中肠有许多类似的属,而后肠似乎是独一无二的。肠球菌,左骨杆菌,乳酸菌,Shimwellia,Megasphaera,Klebsiella,klebsiella,pectinatus,沙门氏菌,Lelliotia和肠杆菌构成了所有肠内最具幼虫的属。总体而言,含有21个属的总肠道细菌的29.5%是木质素降解者,主要是在企业和蛋白质细菌的门中发现的(分别为56.8和39.5%),然后在肌动杆菌(2.5%)和细菌(2.5%)和细菌(1.1%)中适度。最丰富的木质氨基利因属是Levilactobacillus(46.4%),克雷伯氏菌(22.9%),肠杆菌(10.7%),乳杆菌(5.9%)(5.9%),柑橘类杆菌(2.2%),corynenebacterium(1.8%),paucilactocillus(1.8%)(1.8%)(1.8%)(1.8%)(1.8%,1.8%,1.8%,综合综合综合症,综合体)在不同肠道室中发现了不同量的细菌(1.1%)和白细胞(1.0%)。前肢具有最多样化和最高的木质素降解系统型,
抽象背景和目标。视黄酸(RA)是促进正常脊椎动物发育的重要形态,在大多数器官和组织中,其在关键梯度中的工作。RA的外源会在这些器官和组织中引起畸形。目前的研究旨在找出溶解在二甲基亚硫代(DMSO)中的不同浓度6、10mg/ ml的视黄酸对不同胚胎阶段鸡发育的影响。方法。从当地的家禽农场污染的肥沃的家为gallus gallus卵,清洗和消毒,然后分为两组实验,每组一组用于每种浓度。每个实验包含三组,每组10个卵。这些组在四个不同的阶段HH8,HH10,HH15和HH18重复四次。卵在孵育中孵育,以进行要求,然后从孵育中移除并在空气囊中注射RA或(DMSO),或在未经治疗的对照中保留,然后将鸡蛋再孵育24小时。孵育24和48小时后打开卵,收集生存的胚胎并在形态学和组织学上进行评估。结果。该研究表明RA会导致一般的生长迟缓。此外,它会导致小头畸形,颅裂,心脏肿瘤,前肢诱导,直中继。畸形程度取决于发展阶段和RA浓度,是由于高浓度和早期阶段的畸形增加。在早期用10mg/mL处理的胚胎中观察到的显着影响。结论。引用本文。作者。此外,HH8和HH10中RA的作用比在HH15时注射的胚胎和HH18的胚胎的作用更加清晰。这项研究表明,以高于确保正常胚胎发育所必需的剂量的外源性RA治疗会导致严重异常。这表明对类风湿关节炎的胚胎反应非常敏感,尤其是在胎儿神经发生过程中。视黄酸对鸡胚胎发育的影响。Alq J Med App Sci。2023; 6(2):650-660。 https://doi.org/10.5281/zenodo.10015147在多细胞生物,细胞命运和行为的开发过程中引入了几种形态,其作品以精确的梯度调节。视黄酸(RA)是有助于脊椎动物胚胎发展的重要形态学。它是由中胚层组织中的普provicimin A制成的,其中包括视网膜脱水酶家族的成员[1,2]。ra和其他类维生素A及其生理代谢产物对模式发育产生强大的影响,并且可能是调节胚胎发育的形态学之一[3-6]。
心脏和内胚层联盟:多层类器官1 2 Wai Hoe ng†,1,芭比娃娃瓦尔格斯†,1,Hongpeng Jia 2,XI Ren‡,1 3 4 1生物医学工程系,Carnegie Mellon University,Carnegie Mellon University,Carnegie Mellon University,Pittsburgh,Pittsburgh,Pennsylvania。6 2美国马里兰州巴尔的摩市约翰·霍普金斯大学医学院外科部。8†等于贡献9‡信函10 11信函的作者:12 Xi Ren,博士学位。 13 Carnegie Mellon University, Scott Hall 4N111 14 5000 Forbes Avenue, Pittsburgh, PA 15213 15 Telephone: 1-412-268-7485 16 Email: xiren@cmu.edu 17 18 19 Abstract 20 Studies in animal models tracing organogenesis of the mesoderm-derived heart have emphasized 21 the importance of signals coming from adjacent endodermal tissues in coordinating适当的心脏22形态发生。尽管在体外模型(例如心脏器官)表现出巨大的潜力23来概括人心的生理学,但它们无法捕获共同发育的心脏和内胚层器官之间发生的复杂的24个串扰,部分原因是25是由于其独特的生殖层起源。为了解决这一长期挑战的努力,最近的报告26包括心脏和内胚层衍生物既有多核心器官,已经激发了27努力,以了解跨器官,跨分节沟通如何影响其28个各自的形态发生。这些共差异系统已经产生了29个共享信号传导要求的有趣发现,以诱导心脏规范以及原始的前肢,30个肺部或肠谱系。总体而言,这些多素心脏器官为人类发展提供了31个前所未有的窗口,可以揭示内胚层和心脏32如何配合直接形态发生,模式和成熟。此外,通过时空33重组,共同出现的多曲细胞细胞自组装成不同的隔室,如心脏前肠,心脏 - 智能和心脏 - 肺类器官34所示,并经历细胞35细胞35迁移和组织重新组织,以建立组织Bundaries。探讨未来,这36个心脏融合的多素质器官将激发改进细胞37再生干预措施采购的未来策略,并为疾病38调查和药物测试提供更有效的模型。在这篇综述中,我们将介绍39个协调心脏和内胚层形态发生的发育环境,讨论40个心脏和内胚层衍生物的体外共同诱导的策略,并最终评论这一突破启用的挑战和令人兴奋的新的41个研究方向。42 43 44 Non-standard Abbreviations and Acronyms 45 Shh – Sonic hedgehog 46 Wnt2 – Wingless-type MMTV integration site family, member 2 47 Wnt2b – Wingless-type MMTV integration site family, member 2b 48 Tbx5 – T-box transcription factor 5 49 hPSC – Human pluripotent stem cell 50 hiPSC – Human induced多能干细胞51