桑迪亚研究人员发明了护手,这种护手将有助于在战斗期间保护乘坐悍马和其他军用车辆的军人的手臂。长度及肩的桑迪亚护手由多层重型凯夫拉纤维(用于防弹背心和轮胎的增强材料)制成,并配有碳复合材料前臂和上臂保护插件。项目负责人兼桑迪亚物理安全专家杰克·琼斯 (6955) 表示,凯夫拉纤维层的防热特性可减轻弹头爆炸对组织的热效应,而碳复合材料和凯夫拉纤维的结合可减轻钝性创伤效应以及弹头弹片对组织和骨骼的穿透或撕裂效应。“如果桑迪亚护手可以保护一名士兵、水手、飞行员或海军陆战队员免于失去一只手臂,那么付出的努力将是值得的,”杰克说。“这个项目对我们在伊拉克和阿富汗战斗中处于危险中的军人和盟友非常重要。”杰克和吉姆·珀维斯(6955),在桑迪亚降落伞实验室的拉里·惠纳里和理查德·布拉兹菲尔德(均为 2111)的协助下,
摘要 将注意力从威胁性事件上移开可以降低痛觉。这种注意力镇痛作用涉及从前扣带回 (ACC) 到蓝斑,以及从 ACC 到中脑导水管周围灰质 (PAG) – 延髓腹内侧前部 (RVM) 的平行下行控制通路,表明去甲肾上腺素能或阿片类神经调节剂可能发挥作用。为了确定哪种通路调节人类的痛觉活动,我们在三个疗程中同时使用了全脑-脊髓药理学-fMRI (N = 39)。有害的热前臂刺激产生背角 (DH) 的躯体激活,其活动与疼痛报告相关并反映注意力疼痛调节。相邻簇中的活动报告了任务与有害刺激之间的相互作用。有效连接分析表明,ACC 与 PAG 和 RVM 相互作用以调节脊髓活动。用纳曲酮阻断内源性阿片类药物会损害注意力镇痛并破坏 RVM-脊髓和 ACC-PAG 连接。用瑞波西汀增强去甲肾上腺素不会改变注意力镇痛。认知疼痛调节涉及阿片类 ACC-PAG-RVM 下降控制,从而抑制脊髓伤害性活动。
本文介绍了一种基于生物榜样设计 4D 打印自成形材料系统的材料编程方法。植物启发了许多自适应系统,这些系统无需使用任何操作能量即可移动;然而,这些系统通常以简化的双层形式设计和制造。这项工作介绍了用于 4D 打印具有复合机制的仿生行为的计算设计方法。为了模拟运动植物结构的各向异性排列,使用基于挤压的 3D 打印在中观尺度上定制材料系统。该方法通过将缠绕植物(Dioscorea bulbifera)的力产生原理转移到自紧夹板的应用来展示。通过张紧其茎螺旋,D. bulbifera 对其支撑物施加挤压力,以提供对抗重力的稳定性。D. bulbifera 的功能策略被抽象并转化为定制的 4D 打印材料系统。然后评估这些仿生运动机制的挤压力。最后,在腕前臂夹板(一种常见的矫正装置)中对自紧功能进行了原型设计。所提出的方法可以将新颖且扩展的仿生设计策略转移到 4D 打印运动机制中,从而进一步为可穿戴辅助技术及其他领域的新型自适应创作打开设计空间。
摘要:特征提取是基于表面肌电(sEMG)模式识别的多功能假肢控制中最重要的步骤之一。本文提出了一种基于肌肉活跃区域的sEMG特征提取新方法。设计了一个实验,利用不同的特征对四种手部运动进行分类。该实验用于证明新特征具有更好的分类性能。实验结果表明,新特征活跃肌肉区域(AMR)比传统特征平均绝对值(MAV)、波形长度(WL)、零交叉(ZC)和斜率符号变化(SSC)具有更好的分类性能。AMR、MAV、WL、ZC和SSC的平均分类误差分别为13%、19%、26%、24%和22%。新的EMG特征基于手部运动和前臂活跃肌肉区域的映射关系。这种映射关系已经在医学中得到证实。通过新的特征提取算法从原始EMG信号中获得活跃肌肉区域数据。从该算法获得的结果可以很好地表示手部运动。另一方面,新特征向量大小比其他特征小很多,新特征可以降低计算成本,证明了AMR可以提高sEMG模式识别的准确率。
· IME 顾问询问考生她现在的地址。考生回答说她住在纽约州花园城公园第二大道 62 号,邮编 11040。· IME 顾问询问考生住在独栋房子还是公寓里。考生回答说她住在独栋房子里。· IME 顾问询问考生和谁住在一起。考生回答说她一个人住。· IME 顾问询问考生那天她是如何参加考试的。考生回答说她开车去的。· IME 顾问表示考生在 2019 年 1 月遭遇了事故。考生回答说是的。· IME 顾问询问考生在事故中受了什么伤。考生回答说她伤到了头部、右肩、右肘、右前臂、肋骨、背部和右膝。· IME 顾问询问考生体重是增加了还是减少了。考生回答说她体重增加了。 · IME 顾问询问受试者体重增加了多少。受试者回答说增加了 20 磅。 · IME 顾问询问受试者是否仍因受伤而看医生。受试者回答说她去看了 Gus 医生。 · IME 顾问询问受试者多久去看一次 Gus 医生。受试者回答说她每隔几周去看一次医生。
一个暴露的人越早得到疫苗,越好。CDC建议在暴露之日起4天内进行疫苗以防止疾病发作。如果在暴露日期后4-14天给出,则疫苗接种可能会减轻疾病的症状,但不能预防疾病。与复制正托氧化病毒疫苗相比,通过血清转化和免疫原性推断出jynneos预防MPOX的功效。给药皮下(SC):管理0.5 mL;允许疫苗融化并在使用前达到室温(请参阅包装插入)。替代性皮内(ID):按EUA施用0.1 mL(标准皮下剂量的五分之一),最好是前臂的内侧。不良反应常见的不良事件包括注射部位反应(疼痛,发红,肿胀,硬核,瘙痒)和全身性不良反应(肌肉疼痛,头痛,疲劳)。与皮下给药相比,对皮内给药的局部副作用可能更严重。PPE免疫重建标准不稀释给药体积皮下(SC):每个剂量0.5 ml(1小瓶);皮内(ID):0.1 ml剂量(小瓶的五分之一)包装(20)0.5 ml小瓶(请参阅图像);辅助用品未提供疫苗
摘要:近年来大脑 - 机器界面(BMI)取得了显着进步。但是,仍然有几个应用领域需要改进,包括在虚拟现实(VR)模拟过程中对身体运动的准确预测。要获得高水平的浸入VR会话,重要的是要进行双向相互作用,这通常是通过使用移动跟踪设备(例如控制器和身体传感器)来实现的。但是,通过直接通过脑电图(EEG)记录直接从运动皮层获取运动信息来消除对这些外部跟踪设备的需求。这可能会导致更多无缝和身临其境的VR体验。有许多研究调查了运动期间的脑电图记录。这些研究大多数都集中在基于大脑信号的运动预测上,但其中少量的重点是在VR模拟过程中如何利用它们。这表明仍然需要在该领域进行进一步研究,以便充分了解使用脑电图预测VR模拟运动的潜力。我们提出了两个神经网络解码器,旨在根据在本研究中执行VR模拟任务期间记录的大脑活动预测前臂移动和武器移动行为。对于两个解码器,我们都采用了长期的短期内存模型。该研究的发现非常令人鼓舞,这是该技术具有替代外部跟踪设备的前提的借助。
1.按下开/关开关。显示屏将显示 188.8°E。2.松开开/关开关,显示屏将显示 L°C,°C 闪烁。3.消毒探头。4 定位探头:直肠使用 - 将尖端小心地插入直肠,最多 2 厘米。腋窝使用 - 用干毛巾擦拭腋窝。将探头放在患者的腋窝中,并将患者的上臂紧紧压在身体一侧。为避免周围空气的影响,将前臂折叠在胸前,紧紧覆盖腋下的探头尖端。读数通常比核心体温低约 1.0°C。口服使用 - 将探头放在患者的舌头下,并指示患者在测量体温时保持嘴巴闭合,不要咬探头。读数通常比核心体温低约 0.5°C。5.一旦显示屏上的度数符号 (°C) 停止闪烁(通常在 30 到 60 秒内),就会显示正确的温度,并且警报将响起约 2 秒。6.小心取出温度计,不要按下开/关开关。取出后可以读取患者的体温,因为显示屏将保留稳定的温度读数。7.设备将在 8-10 分钟后自动关闭。但是,为了延长电池寿命,最好在测量到温度后按下开/关开关关闭设备。
背景:稳健且连续的神经解码对于可靠且直观的神经机器交互至关重要。本研究开发了一种新型通用神经网络模型,该模型可以根据解码的群体运动神经元放电活动连续预测手指力。方法:我们实施了卷积神经网络 (CNN) 来学习从前臂肌肉的高密度肌电图 (HD-EMG) 信号到群体运动神经元放电频率的映射。鉴于 EMG 信号本质上是随机的,我们首先提取 EMG 能量和频率图的时空特征以提高学习效率。然后,我们通过对多个参与者的群体神经元放电活动进行训练建立了一个通用神经网络模型。使用回归模型,我们实时连续预测单个手指力。我们将力预测性能与两种最先进的方法进行了比较:神经元分解方法和经典的 EMG 幅度方法。结果:我们的结果表明,通用 CNN 模型优于特定于受试者的神经元分解方法和 EMG 振幅方法,测量力和预测力之间的相关系数更高,力预测误差更低。此外,CNN 模型显示出随时间推移更稳定的力预测性能。结论:总体而言,我们的方法为实时和稳健的人机交互提供了一种通用且高效的连续神经解码方法。
我们描述了一个整合并激发 (IF) 脉冲神经网络,该网络结合了脉冲时间依赖可塑性 (STDP),并模拟了产生皮质可塑性的四种不同条件反射协议的实验结果。最初的条件反射实验是在自由移动的非人类灵长类动物 (NHP) 身上进行的,它们具有自主的头部固定双向脑机接口 (BCI)。三种协议涉及由 (1) 单个皮质神经元的脉冲活动、(2) 前臂肌肉的肌电图 (EMG) 活动和 (3) 自发皮质 β 活动周期触发的闭环刺激。第四种协议涉及在相邻皮质部位开环传递刺激对。复制实验结果的 IF 网络由 360 个单元组成,这些单元具有由突触输入产生的模拟膜电位,并在达到阈值时触发脉冲。240 个皮质单元在其目标单元中产生兴奋性或抑制性突触后电位 (PSP)。除了实验观察到的条件作用外,该模型还允许计算最初未记录的底层网络行为。此外,该模型还预测了尚未研究的协议的结果,包括尖峰触发抑制、g 触发刺激和双突触条件作用。模拟的成功表明,结合 STDP 的简单电压 IF 模型可以捕捉通过闭环刺激介导目标可塑性的基本机制。