颞叶癫痫(TLE)是最常见的耐药性癫痫之一,与旁皮脑区域的病理学有关,尤其是在中颞叶中。TLE中的认知功能障碍是经常发生的,并且特别影响情节记忆。至关重要的是,这些困难挑战了患者的生活质量,有时不仅仅是癫痫发作,强调了评估TLE认知功能障碍的神经过程以改善患者的管理。我们的工作利用了一种新型的概念和分析方法,以根据高分辨率MRI分析来评估皮质区域之间微结构差异的空间梯度。梯度轨道轨道区域到区域内的区域变化和骨髓结构的结构,作为结构和功能性组织的系统级别量度。比较了21例患者和35个健康对照之间的皮质范围的微结构梯度,我们观察到了这种梯度在TLE中的组织,这是由于旁皮皮质之间的微观结构分化降低以及剩余的皮质在同侧颞骨和背侧外发前额外区域的显着异常。发现在独立队列中复制。使用独立的验尸数据集,我们观察到体内发现反映了皮质细胞结构中的地形变化。我们确实发现,TLE中微观结构分化的宏观变化反映了帕拉林比克和原发性/运动区域的相似性的增加。与疾病相关的转录组学可以进一步显示我们发现对其他常见癫痫综合征的特异性。最后,微结构的推导与在情节内存功能性MRI范式中看到的认知网络回归有关,并且与任务准确性的个体差异相关。总的来说,我们的发现表明了副层副反应和剩余皮层之间的微体系分化降低的模式,为大规模功能网络重组和TLE的认知功能障碍特征提供了一个结构上的解释。
摘要:目的:比较肝动脉化疗栓塞术(TACE)联合仑伐替尼与TACE联合索拉非尼治疗中晚期肝细胞癌的临床效果及安全性。方法:回顾性研究2019年6月至2021年6月安徽医科大学第一附属医院和中国科学技术大学第一附属医院收治的84例中晚期肝细胞癌患者,对照组给予TACE联合索拉非尼治疗,实验组给予TACE联合仑伐替尼治疗。比较两组临床疗效、肿瘤标志物、肝功能指标及毒副反应发生情况。结果:实验组疾病控制率(DCR)及客观缓解率(ORR)高于对照组,差异有统计学意义(P<0.05)。治疗前,两组患者甲胎蛋白(AFP)、脱γ羧基凝血酶原(DCP)水平比较差异均无统计学意义(均P>0.05);治疗后,两组患者AFP、DCP水平均下降,且实验组低于对照组(均P<0.05)。治疗前,两组患者丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、乳酸脱氢酶(LDH)、胆红素(BIL)水平比较差异均无统计学意义(均P>0.05);治疗后,两组患者ALT、AST、LDH、BIL水平均下降,且实验组低于对照组(均P<0.05)。实验组患者总生存期(OS)和无进展生存期(PFS)均显著高于对照组(均P<0.05)。试验组腹泻、手足综合征、高血压、皮疹等症状发生率均高于对照组(均P<0.05),两组乏力、消化道反应、骨髓抑制、肝功能异常等发生率相似(均P>0.05)。结论:TACE联合仑伐替尼治疗中晚期肝癌患者较TACE联合索拉非尼治疗能更好地控制病情进展、降低肿瘤标志物水平、稳定肝功能。
固态合成代表了溶液 - 相化学的替代方案,可以为通常无法通过常规方法提供的材料提供途径。但是,在高压条件下,多个竞争反应途径使化学均匀系统的靶向合成成为挑战。纳米读,通过压缩芳族碳氢化合物形成的一维钻石聚合物为以控制和可预测的方式进行高压反应提供了独特的机会。我们假设,通过仔细考虑分子堆叠和分子间力(例如,H键),可以形成化学均匀的纳米读物,以保留精确的化学功能。在此,我们通过顺序[4 + 2] Diels Alder Cycloadition反应报告了2,5-二甲基辅助酸的可扩展固态聚合。由此产生的纳米读产品装饰有高密度的吊坠基团,为后合成后处理和功能应用提供了新的机会。的过渡金属配位被证明了功能化的线程,代表了纳米读作为独立合成子的利用的概念证明,以及新颖的,扩展的扩展多维网络的可能性。虽然基于溶液的化学合成是可推广的,但由于诸如几何/空间约束和多个能量竞争的途径之类的局限性,固态的受控有机反应在固态中具有挑战性。11-16碳纳米读是一类新型的晶体,在高压下形成的一维SP 3碳纳米材料。1-9然而,具有与传统方法相当的固态中有机反应的一般合成控制将使一系列新的化学物种和合成子具有挑战性或无法获得基于溶液的化学作用。10高压合成代表了控制固态有机转化的一种新兴方法,该方法使新反应能够产生新的结构基序和新型的键合环境(例如,SP 3 3碳富含碳富含碳的结构)。由于通过缓慢的各向异性压缩苯的初始形成,因此已经开发了几种合成策略,以限制潜在反应途径的数量,并通过选择性环加成促进化学均匀产物的形成。18-24,由于纳米读的骨架仅在一个方向上延伸,因此这些超薄碳材料被预测可以将钻石的最高物理特性与传统聚合物的灵活性结合在一起。25-30可以通过仔细选择小分子前体(例如,苯,17,31吡啶,32吡啶嗪23)来精确控制纳米读的化学成分,从而使它们比可比的纳米材料(例如,纳米管)具有潜在的优势。因此,纳米读的可能应用是多种多样的,包括新颖的储能和先进的结构材料。26,33,34然而,含有均匀吊坠官能团的有序纳米读的形成仍然是一个重大挑战。在纳米读形成条件下,吊坠基团容易产生侧面反应,可以产生各种粘结基序。这种副反应会导致化学不均匀的材料形成,从而导致远距离顺序和精确的化学功能丧失。19,35一种可靠的合成纳米读的方法