摘要:本研究基于关系营销的承诺-信任理论、交易成本理论和力场理论这三个基本理论,通过EFA、CFA和SEM分析,考察了影响越南中北部地区农业供应链合作的因素。研究结果表明,信任和承诺是合作的两个重要前提,对农业供应链合作有积极影响。风险对合作有负面影响,基于对风险性质的理解和研究背景特征的概念进行了解释。合作的阴暗面是机会主义行为,测试了这一因素的影响,并得出结论,有必要限制机会主义行为以加强农业供应链的合作。结果表明,中北部地区特定农业部门之间的合作水平存在差异,其中种植业和畜牧业的合作水平较低,但水产养殖业的合作水平较高。同样,合同关系对于促进农业供应链的合作至关重要。根据这些研究结果,该研究提出了一些切实可行的解决方案,以增加越南中北部地区农业供应链的合作。
许多实验和计算工作试图了解DNA折叠的折叠,但是此过程的时间和长度尺寸构成了显着的挑战。在这里,我们提出了一种使用可切换力场的介观模型来捕获单链和双链DNA基序的行为以及它们之间的过渡,从而使我们能够模拟DNA折纸的折叠,最多可达几个千千目标。对小结构的布朗动力学模拟揭示了一个层次折叠过程,涉及将其拉入的折叠前体,然后结晶成最终结构。我们阐明了各种设计选择对折叠顺序和动力学的影响。较大的结构显示出异质的主食掺入动力学,并且在亚稳态状态中频繁捕获,而不是表现出第一阶动力学和实际上无缺陷的折叠的更容易接近的结构。该模型开辟了一条途径,以更好地理解和设计DNA纳米结构,以提高产量和折叠性能。
摘要:螯合剂在微电子工艺中常用于防止金属离子污染,螯合剂的配体片段在很大程度上决定了其与金属离子的结合强度。寻找具有合适特性的配体将有助于设计螯合剂以增强微电子工艺中对基底上金属离子的捕获和去除。本研究采用量子化学计算模拟十一种配体与水合态的Ni 2+ 、Cu 2+ 、Al 3+ 和Fe 3+ 离子的结合过程,用结合能和结合焓来量化金属离子与配体的结合强度。此外,我们利用前线分子轨道、亲核指数、静电势和基于分子力场的能量分解计算探讨了结合作用机制,并解释了十一种配体结合能力的差异。根据我们的计算结果,提出了有前景的螯合剂结构,旨在指导新螯合剂的设计以解决集成电路工艺中的金属离子污染问题。
https://www.specs.net/index.php 9。 天然产品集合。 Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。 Berman HM,Westbrook J,Feng Z等。 蛋白质数据库。 核酸res。 2000; 28:235-242。 doi:10.1093/nar/28.1.235 11。 Trott O,Olson AJ。 自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。 J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。https://www.specs.net/index.php 9。天然产品集合。Microsource Discovery System Inc. 2022年7月23日访问。http://www.msdis covery.com/natpr od.html 10。Berman HM,Westbrook J,Feng Z等。蛋白质数据库。核酸res。2000; 28:235-242。doi:10.1093/nar/28.1.235 11。Trott O,Olson AJ。自动库克Vina:通过新的评分功能,有效的优化和多线程提高对接的速度和稳定性。J Comput Chem。 2010; 31(2):455-461。 doi:10.1002/jcc.21334 12。 Schrödinger软件。 Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Comput Chem。2010; 31(2):455-461。doi:10.1002/jcc.21334 12。Schrödinger软件。Schrödinger,L.L.C。,纽约,纽约,美国2020年。 13。 McNutt,Francoeur P,Aggarwal R等。 gnina 1.0:深度学习的分子对接。 J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Schrödinger,L.L.C。,纽约,纽约,美国2020年。13。McNutt,Francoeur P,Aggarwal R等。gnina 1.0:深度学习的分子对接。J Chem。 2021; 13(1):1-20。 doi:10.1186/ s13321-021-00522-2 14。 div> Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。J Chem。2021; 13(1):1-20。doi:10.1186/ s13321-021-00522-2 14。 div>Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。 Curr Comput-Aid药物。 2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。Meng XY,Zhang HX,Mezei M,CuiM。分子对接:一种基于结构的药物发现的强大方法。Curr Comput-Aid药物。2011; 7(2):146-157。 doi:10.2174/157340911795677602 15。 Durrant JD,McCammon JA。 分子动力学模拟和药物发现。 BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。2011; 7(2):146-157。doi:10.2174/157340911795677602 15。Durrant JD,McCammon JA。分子动力学模拟和药物发现。BMC Biol。 2011; 9(1):1-9。 doi:10.1186/1741-7007-9-71 16。 案例DA,Betz RM,Cerutti DS等。 琥珀色。 加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。BMC Biol。2011; 9(1):1-9。doi:10.1186/1741-7007-9-71 16。案例DA,Betz RM,Cerutti DS等。琥珀色。加利福尼亚大学; 2016。 17。 Lindorff-Larsen K,Piana S,Palmo K等。 改善了琥珀FF99SB蛋白力场的侧链旋转电位。 蛋白质。 J Chem Phys。加利福尼亚大学; 2016。17。Lindorff-Larsen K,Piana S,Palmo K等。改善了琥珀FF99SB蛋白力场的侧链旋转电位。蛋白质。J Chem Phys。2010; 78(8):1950-1958。doi:10.1002/prot.22711 18。Horn HW,Swope WC,Pitera JW等。开发了改进的生物分子模拟的四个位点水模型:tip4p-ew。2004; 120(20):9665-9678。 doi:10.1063/1.1683075 19。 Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 120(20):9665-9678。doi:10.1063/1.1683075 19。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好? 在524个不同的NMR测量值上进行系统基准。 J化学理论计算。 2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Beauchamp KA,Lin YS,Das R,Pande vs。蛋白质场是否越来越好?在524个不同的NMR测量值上进行系统基准。J化学理论计算。2012; 8(4):1409-1414。 doi:10.1021/ct2007814 20。 Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。 J Chem Inf模型。 2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2012; 8(4):1409-1414。doi:10.1021/ct2007814 20。Zhang H,Yin C,Jiang Y,van der SpoelD。氨基酸的力场基准:I。在不同的水模型中的水合和扩散。J Chem Inf模型。2018; 58(5):1037-1052。 doi:10.1021/acs。 JCIM.8B00026 21。 Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2018; 58(5):1037-1052。doi:10.1021/acs。JCIM.8B00026 21。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。 一般琥珀色场的开发和测试。 J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA。一般琥珀色场的开发和测试。J Comput Chem。 2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2004; 25(9):1157-1174。 doi:10.1002/jcc.20035 22。 Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。 评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。 Comput Biol Med。 2021; 134:104462。 doi:10.1016/j。 compbiomed.2021.104462 23。 Jakalian A,Bush BL,Jack DB,Bayly CI。 快速,有效地产生高质量的原子电荷。 AM1-BCC模型:I。 方法。 J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。2004; 25(9):1157-1174。doi:10.1002/jcc.20035 22。Singh AK,Rana HK,Singh V,Yadav TC,Varadwaj P,Pandey AK。评估链霉菌素诱导的糖尿病大鼠饮食中酚类化合物绿酸的抗糖尿病活性:分子对接,分子动力学,在硅毒性,体外和体内研究中。Comput Biol Med。2021; 134:104462。 doi:10.1016/j。compbiomed.2021.104462 23。Jakalian A,Bush BL,Jack DB,Bayly CI。快速,有效地产生高质量的原子电荷。AM1-BCC模型:I。方法。J Comput Chem。 2000; 21(2):132-146。 doi:10.1002/jcc.10128 24。J Comput Chem。2000; 21(2):132-146。doi:10.1002/jcc.10128 24。Jakalian A,Jack DB,Bayly CI。高,有效地生成高 -
晶格切换蒙特卡罗和相关的 diabat 方法已成为计算同质异形体之间自由能差异的有效而准确的方法。在这项工作中,我们引入了从一种分子晶体中的参考位置和位移到另一种分子晶体中的位置和位移的一对一映射。映射的两个特点有助于使用晶格切换蒙特卡罗和相关的 diabat 方法计算同质异形体自由能差异。首先,映射是单一的,因此其雅可比矩阵不会使自由能计算复杂化。其次,对于任意复杂度的分子晶体,映射都很容易实现。我们通过计算苯和卡马西平同质异形体之间的自由能差异来证明映射。热力学循环的自由能计算,每个循环都涉及三个独立计算的同质异形体自由能差异,都以高精度返回到起始自由能。因此,这些计算提供了方法的力场独立验证,并使我们能够估计单个自由能差异的精度。
尽管现代催化行业的发展很快,但催化剂设计仍主要基于反复试验的实验手段。结果,催化剂开发和商业化的时间表可能需要10到20年。[1]理解催化中所述的微观机制被认为是催化行业的重要方面,即缩短开发新的异质催化剂的时间范围,其中在催化过程中涉及多个阶段。为促进催化剂,原子建模的结构 - 特性关系的理解,例如,基于力场的依赖计算和经典分子动力学(MD)模拟,已广泛用于探索催化机制和新型异构催化剂的催化机制和设计。在许多情况下,催化过程的原子建模取决于构成催化系统的多体系统的大量能量和力评估。需要考虑明确溶剂的效果,或者需要对纳米颗粒催化剂的尺寸依赖性特性进行建模时,问题就会变得更加复杂,这可以使基于密度功能理论(DFT)基于模拟的模拟可行。[2]因此,我们看到了MLIP在催化研究中的相对较高的应用,例如用于研究催化剂的吸附性能,结构预测和动力学。[3–5]
牛顿运动定律,牛顿力学的缺点。拉格朗日力学:约束、广义坐标、虚功原理、达朗贝尔原理、保守和非保守系统的拉格朗日运动方程、达朗贝尔原理的拉格朗日方程、拉格朗日公式的应用。汉密尔顿力学:广义动量和循环坐标、汉密尔顿原理和拉格朗日方程、汉密尔顿运动方程、汉密尔顿公式的应用、鲁斯公式。中心力:两体中心力问题、轨道微分方程、开普勒定律、维里定理、中心力场中的散射、卢瑟福散射。变分原理和最小作用原理。正则变换。泊松和拉格朗日括号、刘维尔定理、相空间动力学、稳定性分析。汉密尔顿-雅可比方程和向量子力学的过渡。耦合振子。刚体动力学。非惯性坐标系。对称性、不变性和诺特定理。狭义相对论和相对论力学基础。四矢量公式。电动力学协变公式基础。
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
摘要烟雾的动态影响在插图设计中令人印象深刻,但是炼焦器用户在没有流体模拟的域知识的情况下设计烟雾效应是一个麻烦且充满挑战的问题。在这项工作中,我们提出了DualSmoke,这是一个两阶段的全球到本地生成框架,用于交互式烟雾插图设计。在全球阶段,提出的方法利用流体模式从用户的手绘草图中生成拉格朗日相干结构。在本地阶段,从生成的相干结构中获得了详细的流量。最后,我们将引导力场应用于烟雾模拟器,以产生所需的烟雾插图。为了构建训练数据集,DualSmoke使用速度场的有限时间Lyapunov指数生成流量模式。合成草图数据是通过骨架提取从流量模式生成的。我们的用户研究验证了拟议的设计界面可以提供各种烟雾插图设计,并具有良好的用户可用性。我们的代码可从https:// github获得。com/shasph/dualsmoke。
用于各种集成模拟的联合自动化存储库(JARVIS)是一个全面的基础架构,提供数据库,工具,教程和基准,用于多尺度,多模式,向前和倒数材料。强调开放访问原则和可重复性,它整合了理论和实验方法,例如密度功能性功能性,量子蒙特卡洛,紧密结合,经典力场以及机器学习方法,包括指纹,图形神经网络,图形神经网络和跨前者模型。其实验数据收集涵盖了低温学,显微镜和衍射,涵盖金属,半导体,绝缘体,超导体,碳捕获系统,高强度化合物以及低维材料,异质结构和异质结构和低维度。JARVIS通过开放数据集,Web应用程序,可执行脚本和同行评审的出版物进行分发资源,从而确保广泛的可访问性和可重复性。在全球范围内广泛采用,它促进了数百万个数据和工具下载量。通过在一个平台下统一不同的方法和数据,Jarvis驱动了基本发现和现实世界的创新,从而推进了传统和数据驱动的材料设计。
