摘要。我们分析了共同参与人工智能 (AI) 的企业和机构的部门和国家系统。除了将 AI 作为通用技术或其特定应用领域的分析之外,我们还借鉴了部门系统的进化分析,并询问“谁在做什么?”在 AI 中。我们提供连接 AI 开发者、制造商和用户的复杂相互依赖模式的细粒度视图。我们区分了 AI 支持、AI 生产和 AI 消费,并分析了企业和社区之间新兴的共同专业化模式。我们发现,人工智能的供应以少数几家大型科技公司为主导,这些公司对人工智能的下游应用(例如搜索、支付、社交媒体)支撑了人工智能最近的大部分进展,同时也提供了必要的上游计算能力(云和边缘)。这些公司在人工智能研究领域主导着顶尖学术机构,进一步巩固了它们的地位。我们发现,只有少数能够数字化和获取高质量数据的公司采用了人工智能,并从中受益。我们考虑了人工智能行业在三个主要地区(中国、美国和欧盟)的不同发展情况,并注意到少数公司正在构建全球人工智能生态系统。我们的贡献是以人工智能为例展示进化思维的演变:我们展示了从国家/部门系统到三螺旋/创新生态系统和数字平台的转变。我们得出了如此广泛的进化理论对理论和实践的影响。
耐粘蛋白是在动物中发现的突出的抗病毒蛋白。耐蛋白的主要功能是生产3'-deoxy -3',4' - 二维德罗 - 酪氨酸三磷酸(DDHCTP),这是一种参与病毒RNA合成的抑制性核苷酸。哺乳动物模型中的研究表明,DDHCTP会干扰代谢蛋白。但是,该假设尚未在Telest中进行检验。在这项研究中,测试了耐毒素在调节病毒出血性败血病毒(VHSV)感染中的代谢改变中的作用。被VHSV感染时,viperin - / - 鱼的死亡率较高。vhsv拷贝数和NP基因的表达在耐蛋白 - / - 芬中显着增加。代谢基因分析显示,苏打,HIF1A,FASN和ACC表达的显着差异,表明它们对代谢的影响。在VHSV感染期间,斑马鱼幼虫中的胆固醇分析表明,胆固醇的产生显着上调,没有耐耐蛋白。对ZF4细胞的体外分析表明,脂质产生的降低显着降低,并且具有耐毒素过表达的活性氧(ROS)产生的显着上调。中性粒细胞和巨噬细胞的募集显着调节。因此,我们证明了耐蛋白在干扰VHSV感染过程中的代谢改变中起作用。
联合药物疗法是成功治疗多种疾病的关键,在这些疾病中单一疗法效果不够好或出现了耐药性。因此,开发新的药物组合是主要关注点。固定剂量组合也是如此,近年来批准的固定剂量组合有所增加。开发固定剂量组合通常需要进行大规模析因设计研究以验证组合的疗效。随着对药物个性化的更多关注,需要为患者提供几种剂量水平的固定剂量组合。对于析因设计研究,这将导致非常昂贵的临床试验。为了降低开发成本并指导药物开发,必须验证现有工具并开发新工具。然而,用于分析固定剂量组合的此类基于模型的工具还处于起步阶段。
Results ......................................................................................................................................... 6
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
逻辑系统与模型系摘要:本文讨论了量子力学实际上解决的问题。其观点表明,在理解问题时忽略了时间及其过程的关键环节。量子力学历史的常见解释认为离散性仅在普朗克尺度上,而在宏观尺度上则转变为连续性甚至平滑性。这种方法充满了一系列看似悖论的悖论。它表明,量子力学的当前数学形式主义仅与其表面上已知的问题部分相关。本文接受的恰恰相反:数学解决方案是绝对相关的,并作为公理基础,从中推导出真实但隐藏的问题。波粒二象性、希尔伯特空间、量子力学的概率和多世界解释、量子信息和薛定谔方程都包括在该基础中。薛定谔方程被理解为能量守恒定律对过去、现在和未来时刻的推广。由此推导出的量子力学的现实问题是:“描述任何物理变化(包括任何机械运动)中时间进程的普遍规律是什么?” 关键词:能量守恒定律;希尔伯特空间;量子力学的多世界诠释;过去、现在和未来;量子力学的概率诠释;量子信息;薛定谔方程;时间;波粒二象性
本书包含 300 多个量子力学问题及其解决方案,涵盖了研究生一年级物理课程中常见的主题。本书特别关注每个问题的表述,并提供详细而广泛的解决方案以帮助理解。这些问题涵盖了从基本练习到更具挑战性的应用和标准材料的扩展的一系列难度。学生需要批判性地思考,并结合以前或同时学习的物理和数学技巧来解决更具挑战性的问题。每章都以一个简短的理论部分开始,阐述正在研究的特定主题,为后续问题设定背景并激发其灵感。本书非常适合自学,或作为高年级本科生和研究生及其导师现有量子力学教科书的有益补充。
自量子物理学诞生以来,“量子”和“经典”世界之间的界限问题就一直备受关注,但今天,这一领域仍有许多悬而未决的问题,而社会对此还没有达成共识。这里最著名的问题可能是测量问题:决定宏观(“经典”)仪器在测量微观(“量子”)系统特性时的行为的规则如何遵循量子力学方程(以及它们是否遵循)。首先,有必要说明的是,量子理论中采用的术语与一般物理术语有本质区别。通常在物理学中(以及在日常生活中),测量被理解为使用测量设备对某些物理量和参考值进行比较。在这种情况下,测量误差通常是由设备的不完善而不是由所研究系统的属性决定的,可以通过改进仪器和测量程序来减少。在量子
